File size: 22,243 Bytes
e87e1e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:505654
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'module: stationery & printed material & services group: stationery
& printed material & services supergroup: stationery & printed material & services
example descriptions: munchkin crayons hween printedsheet mask 2 pk printed tape
tour os silver butterfly relax with art m ab hardbacknotebook stickers p val youmeyou
text heat w mandalorian a 5 nbook nediun bubble envelopes 6 pk whs pastel expan
org p poll decoration 1 airtricity payasyoug'
sentences:
- 'retailer: groveify description: rainbow magicbooks'
- 'retailer: crispcorner description: glazed k kreme'
- 'retailer: vitalveg description: may held aop fl'
- source_sentence: 'module: flavoured drinks carbonated cola group: drinks flavoured
rtd supergroup: beverages non alcoholic example descriptions: cola w xcoke zero
15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry can 009500
pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml diet coke nin 15
cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero coke 250 mlreg pmpg 5 p'
sentences:
- 'retailer: vitalveg description: coke 240 k'
- 'retailer: vitalveg description: tala silicone icing'
- 'retailer: bountify description: pah antibac wood 10 l'
- source_sentence: 'module: skin conditioning moisturising group: skin conditioning
moisturising supergroup: personal care example descriptions: ss crmy bdy oil dove
dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo dry skn gel garnier
milk bld lpblm orgnl vit a serum nv cr gran oh olay bright eye crm bio oil 2 x
200 ml nvfc srm q 10 prlbst sf aa nt crm 50 aveeno cream 500 ml'
sentences:
- 'retailer: wilko description: radiator m key'
- 'retailer: nourify description: okf lprp tblpbl un'
- 'retailer: crispcorner description: 065 each fredflo 60 biodegradable'
- source_sentence: 'module: cakes gateaux ambient group: cakes gateaux ambient supergroup:
food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban lunchbx
js angel slices x 6 spk mr kipling frosty fancies plantastic cherry choc fl hr
kipling angel slices 10 pk brompton choc brownies jschocchunknuffin loaded drip
cake hobnbchoc fjack oreo muffins x 2 mr kipling victoria slices 6 pack mk kip
choc rdsugar m the best brownies odby 5 choc mini'
sentences:
- 'retailer: flavorful description: nr choc brownies'
- 'retailer: producify description: dettol srfc wipe'
- 'retailer: noshify description: garden wheels plate'
- source_sentence: 'module: bread ambient group: bread ambient supergroup: food ambient
example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin
800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich
thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein
thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth
disc pappajuns'
sentences:
- 'retailer: greenly description: pomodoro sauce'
- 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g'
- 'retailer: vitalveg description: ready to eat prun'
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: sentence transformers/all mpnet base v2
type: sentence-transformers/all-mpnet-base-v2
metrics:
- type: cosine_accuracy@1
value: 0.498812351543943
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6342042755344418
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7102137767220903
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7838479809976246
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.498812351543943
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21140142517814728
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14204275534441804
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07838479809976245
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.498812351543943
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6342042755344418
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7102137767220903
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7838479809976246
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6324346540369431
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5850111224220487
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5910447073012788
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred")
# Run inference
sentences = [
'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns',
'retailer: crispcorner description: kingsmill 5050 medius bread 800 g',
'retailer: vitalveg description: ready to eat prun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `sentence-transformers/all-mpnet-base-v2`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.4988 |
| cosine_accuracy@3 | 0.6342 |
| cosine_accuracy@5 | 0.7102 |
| cosine_accuracy@10 | 0.7838 |
| cosine_precision@1 | 0.4988 |
| cosine_precision@3 | 0.2114 |
| cosine_precision@5 | 0.142 |
| cosine_precision@10 | 0.0784 |
| cosine_recall@1 | 0.4988 |
| cosine_recall@3 | 0.6342 |
| cosine_recall@5 | 0.7102 |
| cosine_recall@10 | 0.7838 |
| cosine_ndcg@10 | 0.6324 |
| cosine_mrr@10 | 0.585 |
| **cosine_map@100** | **0.591** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 505,654 training samples
* Columns: <code>query</code> and <code>full_doc</code>
* Approximate statistics based on the first 1000 samples:
| | query | full_doc |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 83 tokens</li><li>mean: 115.71 tokens</li><li>max: 176 tokens</li></ul> |
* Samples:
| query | full_doc |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>retailer: vitalveg description: twin xira</code> | <code>module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g</code> |
| <code>retailer: freshnosh description: mab pop sockt</code> | <code>module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c</code> |
| <code>retailer: nourify description: bts prwn ckt swch</code> | <code>module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
|:------:|:----:|:-------------:|:------------------------------------------------------:|
| 0.0016 | 100 | 1.6195 | 0.2567 |
| 0.0032 | 200 | 1.47 | 0.3166 |
| 0.0047 | 300 | 1.2703 | 0.3814 |
| 0.0063 | 400 | 1.1335 | 0.4495 |
| 0.0079 | 500 | 0.9942 | 0.4827 |
| 0.0095 | 600 | 0.9004 | 0.5058 |
| 0.0111 | 700 | 0.8838 | 0.5069 |
| 0.0016 | 100 | 0.951 | 0.5197 |
| 0.0032 | 200 | 0.9597 | 0.5323 |
| 0.0047 | 300 | 0.9241 | 0.5406 |
| 0.0063 | 400 | 0.8225 | 0.5484 |
| 0.0079 | 500 | 0.7961 | 0.5568 |
| 0.0095 | 600 | 0.7536 | 0.5621 |
| 0.0111 | 700 | 0.7387 | 0.5623 |
| 0.0127 | 800 | 0.7716 | 0.5746 |
| 0.0142 | 900 | 0.7921 | 0.5651 |
| 0.0158 | 1000 | 0.7744 | 0.5707 |
| 0.0174 | 1100 | 0.8021 | 0.5770 |
| 0.0190 | 1200 | 0.732 | 0.5756 |
| 0.0206 | 1300 | 0.764 | 0.5798 |
| 0.0221 | 1400 | 0.7726 | 0.5873 |
| 0.0237 | 1500 | 0.6676 | 0.5921 |
| 0.0253 | 1600 | 0.6851 | 0.5841 |
| 0.0269 | 1700 | 0.7404 | 0.5964 |
| 0.0285 | 1800 | 0.6798 | 0.5928 |
| 0.0301 | 1900 | 0.6485 | 0.5753 |
| 0.0316 | 2000 | 0.649 | 0.5839 |
| 0.0332 | 2100 | 0.6739 | 0.5891 |
| 0.0348 | 2200 | 0.6616 | 0.6045 |
| 0.0364 | 2300 | 0.6287 | 0.5863 |
| 0.0380 | 2400 | 0.6602 | 0.5898 |
| 0.0396 | 2500 | 0.5667 | 0.5910 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu124
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |