File size: 22,243 Bytes
e87e1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:505654
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'module: stationery & printed material & services group: stationery
    & printed material & services supergroup: stationery & printed material & services
    example descriptions: munchkin crayons hween printedsheet mask 2 pk printed tape
    tour os silver butterfly relax with art m ab hardbacknotebook stickers p val youmeyou
    text heat w mandalorian a 5 nbook nediun bubble envelopes 6 pk whs pastel expan
    org p poll decoration 1 airtricity payasyoug'
  sentences:
  - 'retailer: groveify description: rainbow magicbooks'
  - 'retailer: crispcorner description: glazed k kreme'
  - 'retailer: vitalveg description: may held aop fl'
- source_sentence: 'module: flavoured drinks carbonated cola group: drinks flavoured
    rtd supergroup: beverages non alcoholic example descriptions: cola w xcoke zero
    15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry can 009500
    pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml diet coke nin 15
    cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero coke 250 mlreg pmpg 5 p'
  sentences:
  - 'retailer: vitalveg description: coke 240 k'
  - 'retailer: vitalveg description: tala silicone icing'
  - 'retailer: bountify description: pah antibac wood 10 l'
- source_sentence: 'module: skin conditioning moisturising group: skin conditioning
    moisturising supergroup: personal care example descriptions: ss crmy bdy oil dove
    dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo dry skn gel garnier
    milk bld lpblm orgnl vit a serum nv cr gran oh olay bright eye crm bio oil 2 x
    200 ml nvfc srm q 10 prlbst sf aa nt crm 50 aveeno cream 500 ml'
  sentences:
  - 'retailer: wilko description: radiator m key'
  - 'retailer: nourify description: okf lprp tblpbl un'
  - 'retailer: crispcorner description: 065 each fredflo 60 biodegradable'
- source_sentence: 'module: cakes gateaux ambient group: cakes gateaux ambient supergroup:
    food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban lunchbx
    js angel slices x 6 spk mr kipling frosty fancies plantastic cherry choc fl hr
    kipling angel slices 10 pk brompton choc brownies jschocchunknuffin loaded drip
    cake hobnbchoc fjack oreo muffins x 2 mr kipling victoria slices 6 pack mk kip
    choc rdsugar m the best brownies odby 5 choc mini'
  sentences:
  - 'retailer: flavorful description: nr choc brownies'
  - 'retailer: producify description: dettol srfc wipe'
  - 'retailer: noshify description: garden wheels plate'
- source_sentence: 'module: bread ambient group: bread ambient supergroup: food ambient
    example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin
    800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich
    thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein
    thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth
    disc pappajuns'
  sentences:
  - 'retailer: greenly description: pomodoro sauce'
  - 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g'
  - 'retailer: vitalveg description: ready to eat prun'
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: sentence transformers/all mpnet base v2
      type: sentence-transformers/all-mpnet-base-v2
    metrics:
    - type: cosine_accuracy@1
      value: 0.498812351543943
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6342042755344418
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7102137767220903
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7838479809976246
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.498812351543943
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.21140142517814728
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14204275534441804
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07838479809976245
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.498812351543943
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6342042755344418
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7102137767220903
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7838479809976246
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6324346540369431
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5850111224220487
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5910447073012788
      name: Cosine Map@100
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred")
# Run inference
sentences = [
    'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns',
    'retailer: crispcorner description: kingsmill 5050 medius bread 800 g',
    'retailer: vitalveg description: ready to eat prun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `sentence-transformers/all-mpnet-base-v2`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.4988    |
| cosine_accuracy@3   | 0.6342    |
| cosine_accuracy@5   | 0.7102    |
| cosine_accuracy@10  | 0.7838    |
| cosine_precision@1  | 0.4988    |
| cosine_precision@3  | 0.2114    |
| cosine_precision@5  | 0.142     |
| cosine_precision@10 | 0.0784    |
| cosine_recall@1     | 0.4988    |
| cosine_recall@3     | 0.6342    |
| cosine_recall@5     | 0.7102    |
| cosine_recall@10    | 0.7838    |
| cosine_ndcg@10      | 0.6324    |
| cosine_mrr@10       | 0.585     |
| **cosine_map@100**  | **0.591** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### csv

* Dataset: csv
* Size: 505,654 training samples
* Columns: <code>query</code> and <code>full_doc</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | full_doc                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 83 tokens</li><li>mean: 115.71 tokens</li><li>max: 176 tokens</li></ul> |
* Samples:
  | query                                                         | full_doc                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>retailer: vitalveg description: twin xira</code>        | <code>module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g</code> |
  | <code>retailer: freshnosh description: mab pop sockt</code>   | <code>module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c</code>       |
  | <code>retailer: nourify description: bts prwn ckt swch</code> | <code>module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s</code>                                               |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
|:------:|:----:|:-------------:|:------------------------------------------------------:|
| 0.0016 | 100  | 1.6195        | 0.2567                                                 |
| 0.0032 | 200  | 1.47          | 0.3166                                                 |
| 0.0047 | 300  | 1.2703        | 0.3814                                                 |
| 0.0063 | 400  | 1.1335        | 0.4495                                                 |
| 0.0079 | 500  | 0.9942        | 0.4827                                                 |
| 0.0095 | 600  | 0.9004        | 0.5058                                                 |
| 0.0111 | 700  | 0.8838        | 0.5069                                                 |
| 0.0016 | 100  | 0.951         | 0.5197                                                 |
| 0.0032 | 200  | 0.9597        | 0.5323                                                 |
| 0.0047 | 300  | 0.9241        | 0.5406                                                 |
| 0.0063 | 400  | 0.8225        | 0.5484                                                 |
| 0.0079 | 500  | 0.7961        | 0.5568                                                 |
| 0.0095 | 600  | 0.7536        | 0.5621                                                 |
| 0.0111 | 700  | 0.7387        | 0.5623                                                 |
| 0.0127 | 800  | 0.7716        | 0.5746                                                 |
| 0.0142 | 900  | 0.7921        | 0.5651                                                 |
| 0.0158 | 1000 | 0.7744        | 0.5707                                                 |
| 0.0174 | 1100 | 0.8021        | 0.5770                                                 |
| 0.0190 | 1200 | 0.732         | 0.5756                                                 |
| 0.0206 | 1300 | 0.764         | 0.5798                                                 |
| 0.0221 | 1400 | 0.7726        | 0.5873                                                 |
| 0.0237 | 1500 | 0.6676        | 0.5921                                                 |
| 0.0253 | 1600 | 0.6851        | 0.5841                                                 |
| 0.0269 | 1700 | 0.7404        | 0.5964                                                 |
| 0.0285 | 1800 | 0.6798        | 0.5928                                                 |
| 0.0301 | 1900 | 0.6485        | 0.5753                                                 |
| 0.0316 | 2000 | 0.649         | 0.5839                                                 |
| 0.0332 | 2100 | 0.6739        | 0.5891                                                 |
| 0.0348 | 2200 | 0.6616        | 0.6045                                                 |
| 0.0364 | 2300 | 0.6287        | 0.5863                                                 |
| 0.0380 | 2400 | 0.6602        | 0.5898                                                 |
| 0.0396 | 2500 | 0.5667        | 0.5910                                                 |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu124
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->