carnival13 commited on
Commit
e87e1e2
·
verified ·
1 Parent(s): 1f7b38e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:505654
27
+ - loss:MultipleNegativesRankingLoss
28
+ widget:
29
+ - source_sentence: 'module: stationery & printed material & services group: stationery
30
+ & printed material & services supergroup: stationery & printed material & services
31
+ example descriptions: munchkin crayons hween printedsheet mask 2 pk printed tape
32
+ tour os silver butterfly relax with art m ab hardbacknotebook stickers p val youmeyou
33
+ text heat w mandalorian a 5 nbook nediun bubble envelopes 6 pk whs pastel expan
34
+ org p poll decoration 1 airtricity payasyoug'
35
+ sentences:
36
+ - 'retailer: groveify description: rainbow magicbooks'
37
+ - 'retailer: crispcorner description: glazed k kreme'
38
+ - 'retailer: vitalveg description: may held aop fl'
39
+ - source_sentence: 'module: flavoured drinks carbonated cola group: drinks flavoured
40
+ rtd supergroup: beverages non alcoholic example descriptions: cola w xcoke zero
41
+ 15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry can 009500
42
+ pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml diet coke nin 15
43
+ cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero coke 250 mlreg pmpg 5 p'
44
+ sentences:
45
+ - 'retailer: vitalveg description: coke 240 k'
46
+ - 'retailer: vitalveg description: tala silicone icing'
47
+ - 'retailer: bountify description: pah antibac wood 10 l'
48
+ - source_sentence: 'module: skin conditioning moisturising group: skin conditioning
49
+ moisturising supergroup: personal care example descriptions: ss crmy bdy oil dove
50
+ dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo dry skn gel garnier
51
+ milk bld lpblm orgnl vit a serum nv cr gran oh olay bright eye crm bio oil 2 x
52
+ 200 ml nvfc srm q 10 prlbst sf aa nt crm 50 aveeno cream 500 ml'
53
+ sentences:
54
+ - 'retailer: wilko description: radiator m key'
55
+ - 'retailer: nourify description: okf lprp tblpbl un'
56
+ - 'retailer: crispcorner description: 065 each fredflo 60 biodegradable'
57
+ - source_sentence: 'module: cakes gateaux ambient group: cakes gateaux ambient supergroup:
58
+ food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban lunchbx
59
+ js angel slices x 6 spk mr kipling frosty fancies plantastic cherry choc fl hr
60
+ kipling angel slices 10 pk brompton choc brownies jschocchunknuffin loaded drip
61
+ cake hobnbchoc fjack oreo muffins x 2 mr kipling victoria slices 6 pack mk kip
62
+ choc rdsugar m the best brownies odby 5 choc mini'
63
+ sentences:
64
+ - 'retailer: flavorful description: nr choc brownies'
65
+ - 'retailer: producify description: dettol srfc wipe'
66
+ - 'retailer: noshify description: garden wheels plate'
67
+ - source_sentence: 'module: bread ambient group: bread ambient supergroup: food ambient
68
+ example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin
69
+ 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich
70
+ thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein
71
+ thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth
72
+ disc pappajuns'
73
+ sentences:
74
+ - 'retailer: greenly description: pomodoro sauce'
75
+ - 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g'
76
+ - 'retailer: vitalveg description: ready to eat prun'
77
+ model-index:
78
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: sentence transformers/all mpnet base v2
85
+ type: sentence-transformers/all-mpnet-base-v2
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.498812351543943
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.6342042755344418
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.7102137767220903
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.7838479809976246
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.498812351543943
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.21140142517814728
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.14204275534441804
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.07838479809976245
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.498812351543943
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.6342042755344418
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.7102137767220903
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.7838479809976246
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.6324346540369431
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.5850111224220487
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.5910447073012788
131
+ name: Cosine Map@100
132
+ ---
133
+
134
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
143
+ - **Maximum Sequence Length:** 384 tokens
144
+ - **Output Dimensionality:** 768 tokens
145
+ - **Similarity Function:** Cosine Similarity
146
+ - **Training Dataset:**
147
+ - csv
148
+ <!-- - **Language:** Unknown -->
149
+ <!-- - **License:** Unknown -->
150
+
151
+ ### Model Sources
152
+
153
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
154
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
155
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
156
+
157
+ ### Full Model Architecture
158
+
159
+ ```
160
+ SentenceTransformer(
161
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
162
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
163
+ (2): Normalize()
164
+ )
165
+ ```
166
+
167
+ ## Usage
168
+
169
+ ### Direct Usage (Sentence Transformers)
170
+
171
+ First install the Sentence Transformers library:
172
+
173
+ ```bash
174
+ pip install -U sentence-transformers
175
+ ```
176
+
177
+ Then you can load this model and run inference.
178
+ ```python
179
+ from sentence_transformers import SentenceTransformer
180
+
181
+ # Download from the 🤗 Hub
182
+ model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred")
183
+ # Run inference
184
+ sentences = [
185
+ 'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns',
186
+ 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g',
187
+ 'retailer: vitalveg description: ready to eat prun',
188
+ ]
189
+ embeddings = model.encode(sentences)
190
+ print(embeddings.shape)
191
+ # [3, 768]
192
+
193
+ # Get the similarity scores for the embeddings
194
+ similarities = model.similarity(embeddings, embeddings)
195
+ print(similarities.shape)
196
+ # [3, 3]
197
+ ```
198
+
199
+ <!--
200
+ ### Direct Usage (Transformers)
201
+
202
+ <details><summary>Click to see the direct usage in Transformers</summary>
203
+
204
+ </details>
205
+ -->
206
+
207
+ <!--
208
+ ### Downstream Usage (Sentence Transformers)
209
+
210
+ You can finetune this model on your own dataset.
211
+
212
+ <details><summary>Click to expand</summary>
213
+
214
+ </details>
215
+ -->
216
+
217
+ <!--
218
+ ### Out-of-Scope Use
219
+
220
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
221
+ -->
222
+
223
+ ## Evaluation
224
+
225
+ ### Metrics
226
+
227
+ #### Information Retrieval
228
+ * Dataset: `sentence-transformers/all-mpnet-base-v2`
229
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
230
+
231
+ | Metric | Value |
232
+ |:--------------------|:----------|
233
+ | cosine_accuracy@1 | 0.4988 |
234
+ | cosine_accuracy@3 | 0.6342 |
235
+ | cosine_accuracy@5 | 0.7102 |
236
+ | cosine_accuracy@10 | 0.7838 |
237
+ | cosine_precision@1 | 0.4988 |
238
+ | cosine_precision@3 | 0.2114 |
239
+ | cosine_precision@5 | 0.142 |
240
+ | cosine_precision@10 | 0.0784 |
241
+ | cosine_recall@1 | 0.4988 |
242
+ | cosine_recall@3 | 0.6342 |
243
+ | cosine_recall@5 | 0.7102 |
244
+ | cosine_recall@10 | 0.7838 |
245
+ | cosine_ndcg@10 | 0.6324 |
246
+ | cosine_mrr@10 | 0.585 |
247
+ | **cosine_map@100** | **0.591** |
248
+
249
+ <!--
250
+ ## Bias, Risks and Limitations
251
+
252
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
253
+ -->
254
+
255
+ <!--
256
+ ### Recommendations
257
+
258
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
259
+ -->
260
+
261
+ ## Training Details
262
+
263
+ ### Training Dataset
264
+
265
+ #### csv
266
+
267
+ * Dataset: csv
268
+ * Size: 505,654 training samples
269
+ * Columns: <code>query</code> and <code>full_doc</code>
270
+ * Approximate statistics based on the first 1000 samples:
271
+ | | query | full_doc |
272
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
273
+ | type | string | string |
274
+ | details | <ul><li>min: 10 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 83 tokens</li><li>mean: 115.71 tokens</li><li>max: 176 tokens</li></ul> |
275
+ * Samples:
276
+ | query | full_doc |
277
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
278
+ | <code>retailer: vitalveg description: twin xira</code> | <code>module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g</code> |
279
+ | <code>retailer: freshnosh description: mab pop sockt</code> | <code>module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c</code> |
280
+ | <code>retailer: nourify description: bts prwn ckt swch</code> | <code>module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s</code> |
281
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
282
+ ```json
283
+ {
284
+ "scale": 20.0,
285
+ "similarity_fct": "cos_sim"
286
+ }
287
+ ```
288
+
289
+ ### Training Hyperparameters
290
+ #### Non-Default Hyperparameters
291
+
292
+ - `eval_strategy`: steps
293
+ - `per_device_train_batch_size`: 4
294
+ - `per_device_eval_batch_size`: 16
295
+ - `learning_rate`: 2e-05
296
+ - `num_train_epochs`: 1
297
+ - `warmup_ratio`: 0.1
298
+ - `fp16`: True
299
+ - `batch_sampler`: no_duplicates
300
+
301
+ #### All Hyperparameters
302
+ <details><summary>Click to expand</summary>
303
+
304
+ - `overwrite_output_dir`: False
305
+ - `do_predict`: False
306
+ - `eval_strategy`: steps
307
+ - `prediction_loss_only`: True
308
+ - `per_device_train_batch_size`: 4
309
+ - `per_device_eval_batch_size`: 16
310
+ - `per_gpu_train_batch_size`: None
311
+ - `per_gpu_eval_batch_size`: None
312
+ - `gradient_accumulation_steps`: 1
313
+ - `eval_accumulation_steps`: None
314
+ - `torch_empty_cache_steps`: None
315
+ - `learning_rate`: 2e-05
316
+ - `weight_decay`: 0.0
317
+ - `adam_beta1`: 0.9
318
+ - `adam_beta2`: 0.999
319
+ - `adam_epsilon`: 1e-08
320
+ - `max_grad_norm`: 1.0
321
+ - `num_train_epochs`: 1
322
+ - `max_steps`: -1
323
+ - `lr_scheduler_type`: linear
324
+ - `lr_scheduler_kwargs`: {}
325
+ - `warmup_ratio`: 0.1
326
+ - `warmup_steps`: 0
327
+ - `log_level`: passive
328
+ - `log_level_replica`: warning
329
+ - `log_on_each_node`: True
330
+ - `logging_nan_inf_filter`: True
331
+ - `save_safetensors`: True
332
+ - `save_on_each_node`: False
333
+ - `save_only_model`: False
334
+ - `restore_callback_states_from_checkpoint`: False
335
+ - `no_cuda`: False
336
+ - `use_cpu`: False
337
+ - `use_mps_device`: False
338
+ - `seed`: 42
339
+ - `data_seed`: None
340
+ - `jit_mode_eval`: False
341
+ - `use_ipex`: False
342
+ - `bf16`: False
343
+ - `fp16`: True
344
+ - `fp16_opt_level`: O1
345
+ - `half_precision_backend`: auto
346
+ - `bf16_full_eval`: False
347
+ - `fp16_full_eval`: False
348
+ - `tf32`: None
349
+ - `local_rank`: 0
350
+ - `ddp_backend`: None
351
+ - `tpu_num_cores`: None
352
+ - `tpu_metrics_debug`: False
353
+ - `debug`: []
354
+ - `dataloader_drop_last`: False
355
+ - `dataloader_num_workers`: 0
356
+ - `dataloader_prefetch_factor`: None
357
+ - `past_index`: -1
358
+ - `disable_tqdm`: False
359
+ - `remove_unused_columns`: True
360
+ - `label_names`: None
361
+ - `load_best_model_at_end`: False
362
+ - `ignore_data_skip`: False
363
+ - `fsdp`: []
364
+ - `fsdp_min_num_params`: 0
365
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
366
+ - `fsdp_transformer_layer_cls_to_wrap`: None
367
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: False
387
+ - `hub_always_push`: False
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `eval_do_concat_batches`: True
392
+ - `fp16_backend`: auto
393
+ - `push_to_hub_model_id`: None
394
+ - `push_to_hub_organization`: None
395
+ - `mp_parameters`:
396
+ - `auto_find_batch_size`: False
397
+ - `full_determinism`: False
398
+ - `torchdynamo`: None
399
+ - `ray_scope`: last
400
+ - `ddp_timeout`: 1800
401
+ - `torch_compile`: False
402
+ - `torch_compile_backend`: None
403
+ - `torch_compile_mode`: None
404
+ - `dispatch_batches`: None
405
+ - `split_batches`: None
406
+ - `include_tokens_per_second`: False
407
+ - `include_num_input_tokens_seen`: False
408
+ - `neftune_noise_alpha`: None
409
+ - `optim_target_modules`: None
410
+ - `batch_eval_metrics`: False
411
+ - `eval_on_start`: False
412
+ - `eval_use_gather_object`: False
413
+ - `batch_sampler`: no_duplicates
414
+ - `multi_dataset_batch_sampler`: proportional
415
+
416
+ </details>
417
+
418
+ ### Training Logs
419
+ | Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
420
+ |:------:|:----:|:-------------:|:------------------------------------------------------:|
421
+ | 0.0016 | 100 | 1.6195 | 0.2567 |
422
+ | 0.0032 | 200 | 1.47 | 0.3166 |
423
+ | 0.0047 | 300 | 1.2703 | 0.3814 |
424
+ | 0.0063 | 400 | 1.1335 | 0.4495 |
425
+ | 0.0079 | 500 | 0.9942 | 0.4827 |
426
+ | 0.0095 | 600 | 0.9004 | 0.5058 |
427
+ | 0.0111 | 700 | 0.8838 | 0.5069 |
428
+ | 0.0016 | 100 | 0.951 | 0.5197 |
429
+ | 0.0032 | 200 | 0.9597 | 0.5323 |
430
+ | 0.0047 | 300 | 0.9241 | 0.5406 |
431
+ | 0.0063 | 400 | 0.8225 | 0.5484 |
432
+ | 0.0079 | 500 | 0.7961 | 0.5568 |
433
+ | 0.0095 | 600 | 0.7536 | 0.5621 |
434
+ | 0.0111 | 700 | 0.7387 | 0.5623 |
435
+ | 0.0127 | 800 | 0.7716 | 0.5746 |
436
+ | 0.0142 | 900 | 0.7921 | 0.5651 |
437
+ | 0.0158 | 1000 | 0.7744 | 0.5707 |
438
+ | 0.0174 | 1100 | 0.8021 | 0.5770 |
439
+ | 0.0190 | 1200 | 0.732 | 0.5756 |
440
+ | 0.0206 | 1300 | 0.764 | 0.5798 |
441
+ | 0.0221 | 1400 | 0.7726 | 0.5873 |
442
+ | 0.0237 | 1500 | 0.6676 | 0.5921 |
443
+ | 0.0253 | 1600 | 0.6851 | 0.5841 |
444
+ | 0.0269 | 1700 | 0.7404 | 0.5964 |
445
+ | 0.0285 | 1800 | 0.6798 | 0.5928 |
446
+ | 0.0301 | 1900 | 0.6485 | 0.5753 |
447
+ | 0.0316 | 2000 | 0.649 | 0.5839 |
448
+ | 0.0332 | 2100 | 0.6739 | 0.5891 |
449
+ | 0.0348 | 2200 | 0.6616 | 0.6045 |
450
+ | 0.0364 | 2300 | 0.6287 | 0.5863 |
451
+ | 0.0380 | 2400 | 0.6602 | 0.5898 |
452
+ | 0.0396 | 2500 | 0.5667 | 0.5910 |
453
+
454
+
455
+ ### Framework Versions
456
+ - Python: 3.10.14
457
+ - Sentence Transformers: 3.1.1
458
+ - Transformers: 4.44.2
459
+ - PyTorch: 2.4.0+cu124
460
+ - Accelerate: 0.33.0
461
+ - Datasets: 2.21.0
462
+ - Tokenizers: 0.19.1
463
+
464
+ ## Citation
465
+
466
+ ### BibTeX
467
+
468
+ #### Sentence Transformers
469
+ ```bibtex
470
+ @inproceedings{reimers-2019-sentence-bert,
471
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
472
+ author = "Reimers, Nils and Gurevych, Iryna",
473
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
474
+ month = "11",
475
+ year = "2019",
476
+ publisher = "Association for Computational Linguistics",
477
+ url = "https://arxiv.org/abs/1908.10084",
478
+ }
479
+ ```
480
+
481
+ #### MultipleNegativesRankingLoss
482
+ ```bibtex
483
+ @misc{henderson2017efficient,
484
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
485
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
486
+ year={2017},
487
+ eprint={1705.00652},
488
+ archivePrefix={arXiv},
489
+ primaryClass={cs.CL}
490
+ }
491
+ ```
492
+
493
+ <!--
494
+ ## Glossary
495
+
496
+ *Clearly define terms in order to be accessible across audiences.*
497
+ -->
498
+
499
+ <!--
500
+ ## Model Card Authors
501
+
502
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
503
+ -->
504
+
505
+ <!--
506
+ ## Model Card Contact
507
+
508
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
509
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fef4a662d3113a09d266f04761474f61d9dfa2b5cae7fdf750d36458830a70f
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff