|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- balbus-classifier |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: miosipof/whisper-small-ft-balbus-sep28k-v1.6 |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: Apple dataset |
|
type: balbus-classifier |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8100908806016922 |
|
- name: Precision |
|
type: precision |
|
value: 0.8183656957928802 |
|
- name: Recall |
|
type: recall |
|
value: 0.7261306532663316 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7694941042221377 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# miosipof/whisper-small-ft-balbus-sep28k-v1.6 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Apple dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1091 |
|
- Accuracy: 0.8101 |
|
- Precision: 0.8184 |
|
- Recall: 0.7261 |
|
- F1: 0.7695 |
|
- Roc-auc: 0.8006 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.5 |
|
- training_steps: 1200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| |
|
| 0.1683 | 0.2506 | 200 | 0.1682 | 0.5730 | 0.7364 | 0.0341 | 0.0652 | 0.5123 | |
|
| 0.1494 | 0.5013 | 400 | 0.1446 | 0.7084 | 0.6603 | 0.6838 | 0.6718 | 0.7056 | |
|
| 0.1212 | 0.7519 | 600 | 0.1236 | 0.7629 | 0.6917 | 0.8245 | 0.7523 | 0.7699 | |
|
| 0.1088 | 1.0025 | 800 | 0.1107 | 0.8062 | 0.8337 | 0.6945 | 0.7578 | 0.7936 | |
|
| 0.0955 | 1.2531 | 1000 | 0.1106 | 0.8081 | 0.8036 | 0.7416 | 0.7713 | 0.8006 | |
|
| 0.0997 | 1.5038 | 1200 | 0.1091 | 0.8101 | 0.8184 | 0.7261 | 0.7695 | 0.8006 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.2.0 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|