miosipof commited on
Commit
31669fc
·
verified ·
1 Parent(s): ebe3820

End of training

Browse files
Files changed (1) hide show
  1. README.md +22 -29
README.md CHANGED
@@ -12,7 +12,7 @@ metrics:
12
  - recall
13
  - f1
14
  model-index:
15
- - name: miosipof/whisper-small-ft-balbus-sep28k-v1.5
16
  results:
17
  - task:
18
  name: Audio Classification
@@ -26,34 +26,31 @@ model-index:
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
- value:
30
- accuracy: 0.8111877154497023
31
  - name: Precision
32
  type: precision
33
- value:
34
- precision: 0.8133174791914387
35
  - name: Recall
36
  type: recall
37
- value:
38
- recall: 0.7365398420674802
39
  - name: F1
40
  type: f1
41
- value:
42
- f1: 0.7730269353927294
43
  ---
44
 
45
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
46
  should probably proofread and complete it, then remove this comment. -->
47
 
48
- # miosipof/whisper-small-ft-balbus-sep28k-v1.5
49
 
50
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
51
  It achieves the following results on the evaluation set:
52
- - Loss: 0.1083
53
- - Accuracy: {'accuracy': 0.8111877154497023}
54
- - Precision: {'precision': 0.8133174791914387}
55
- - Recall: {'recall': 0.7365398420674802}
56
- - F1: {'f1': 0.7730269353927294}
 
57
 
58
  ## Model description
59
 
@@ -72,7 +69,7 @@ More information needed
72
  ### Training hyperparameters
73
 
74
  The following hyperparameters were used during training:
75
- - learning_rate: 3e-06
76
  - train_batch_size: 16
77
  - eval_batch_size: 8
78
  - seed: 42
@@ -81,23 +78,19 @@ The following hyperparameters were used during training:
81
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
82
  - lr_scheduler_type: linear
83
  - lr_scheduler_warmup_ratio: 0.5
84
- - training_steps: 1000
85
  - mixed_precision_training: Native AMP
86
 
87
  ### Training results
88
 
89
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
90
- |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:---------------------------------:|:-------------------------------:|:----------------------------:|
91
- | 0.1718 | 0.1253 | 100 | 0.1705 | {'accuracy': 0.564243183954873} | {'precision': 0.6190476190476191} | {'recall': 0.00466618808327351} | {'f1': 0.009262557890986818} |
92
- | 0.1683 | 0.2506 | 200 | 0.1653 | {'accuracy': 0.6118771544970228} | {'precision': 0.7677642980935875} | {'recall': 0.15900933237616655} | {'f1': 0.26345524829021705} |
93
- | 0.1595 | 0.3759 | 300 | 0.1494 | {'accuracy': 0.6847383265434033} | {'precision': 0.6486175115207373} | {'recall': 0.6062455132806892} | {'f1': 0.6267161410018552} |
94
- | 0.1299 | 0.5013 | 400 | 0.1266 | {'accuracy': 0.7608900031338138} | {'precision': 0.7008928571428571} | {'recall': 0.7889447236180904} | {'f1': 0.7423167848699763} |
95
- | 0.1174 | 0.6266 | 500 | 0.1140 | {'accuracy': 0.7977123158884363} | {'precision': 0.7800674409891345} | {'recall': 0.747307968413496} | {'f1': 0.7633363886342804} |
96
- | 0.1117 | 0.7519 | 600 | 0.1155 | {'accuracy': 0.7919147602632404} | {'precision': 0.7362281270252754} | {'recall': 0.8155061019382628} | {'f1': 0.773841961852861} |
97
- | 0.1072 | 0.8772 | 700 | 0.1074 | {'accuracy': 0.8096208085239737} | {'precision': 0.8282490597576264} | {'recall': 0.7114142139267767} | {'f1': 0.765398725622707} |
98
- | 0.106 | 1.0025 | 800 | 0.1078 | {'accuracy': 0.8077405202130994} | {'precision': 0.8175152749490835} | {'recall': 0.7203876525484566} | {'f1': 0.7658843732112193} |
99
- | 0.1001 | 1.1278 | 900 | 0.1079 | {'accuracy': 0.810404261986838} | {'precision': 0.8174858984689767} | {'recall': 0.7282842785355348} | {'f1': 0.7703113135914958} |
100
- | 0.092 | 1.2531 | 1000 | 0.1083 | {'accuracy': 0.8111877154497023} | {'precision': 0.8133174791914387} | {'recall': 0.7365398420674802} | {'f1': 0.7730269353927294} |
101
 
102
 
103
  ### Framework versions
 
12
  - recall
13
  - f1
14
  model-index:
15
+ - name: miosipof/whisper-small-ft-balbus-sep28k-v1.6
16
  results:
17
  - task:
18
  name: Audio Classification
 
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
+ value: 0.8100908806016922
 
30
  - name: Precision
31
  type: precision
32
+ value: 0.8183656957928802
 
33
  - name: Recall
34
  type: recall
35
+ value: 0.7261306532663316
 
36
  - name: F1
37
  type: f1
38
+ value: 0.7694941042221377
 
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
  should probably proofread and complete it, then remove this comment. -->
43
 
44
+ # miosipof/whisper-small-ft-balbus-sep28k-v1.6
45
 
46
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.1091
49
+ - Accuracy: 0.8101
50
+ - Precision: 0.8184
51
+ - Recall: 0.7261
52
+ - F1: 0.7695
53
+ - Roc-auc: 0.8006
54
 
55
  ## Model description
56
 
 
69
  ### Training hyperparameters
70
 
71
  The following hyperparameters were used during training:
72
+ - learning_rate: 2e-06
73
  - train_batch_size: 16
74
  - eval_batch_size: 8
75
  - seed: 42
 
78
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
  - lr_scheduler_type: linear
80
  - lr_scheduler_warmup_ratio: 0.5
81
+ - training_steps: 1200
82
  - mixed_precision_training: Native AMP
83
 
84
  ### Training results
85
 
86
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
87
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
88
+ | 0.1683 | 0.2506 | 200 | 0.1682 | 0.5730 | 0.7364 | 0.0341 | 0.0652 | 0.5123 |
89
+ | 0.1494 | 0.5013 | 400 | 0.1446 | 0.7084 | 0.6603 | 0.6838 | 0.6718 | 0.7056 |
90
+ | 0.1212 | 0.7519 | 600 | 0.1236 | 0.7629 | 0.6917 | 0.8245 | 0.7523 | 0.7699 |
91
+ | 0.1088 | 1.0025 | 800 | 0.1107 | 0.8062 | 0.8337 | 0.6945 | 0.7578 | 0.7936 |
92
+ | 0.0955 | 1.2531 | 1000 | 0.1106 | 0.8081 | 0.8036 | 0.7416 | 0.7713 | 0.8006 |
93
+ | 0.0997 | 1.5038 | 1200 | 0.1091 | 0.8101 | 0.8184 | 0.7261 | 0.7695 | 0.8006 |
 
 
 
 
94
 
95
 
96
  ### Framework versions