End of training
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ metrics:
|
|
12 |
- recall
|
13 |
- f1
|
14 |
model-index:
|
15 |
-
- name: miosipof/whisper-small-ft-balbus-sep28k-v1.
|
16 |
results:
|
17 |
- task:
|
18 |
name: Audio Classification
|
@@ -26,34 +26,31 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
-
value:
|
30 |
-
accuracy: 0.8111877154497023
|
31 |
- name: Precision
|
32 |
type: precision
|
33 |
-
value:
|
34 |
-
precision: 0.8133174791914387
|
35 |
- name: Recall
|
36 |
type: recall
|
37 |
-
value:
|
38 |
-
recall: 0.7365398420674802
|
39 |
- name: F1
|
40 |
type: f1
|
41 |
-
value:
|
42 |
-
f1: 0.7730269353927294
|
43 |
---
|
44 |
|
45 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
46 |
should probably proofread and complete it, then remove this comment. -->
|
47 |
|
48 |
-
# miosipof/whisper-small-ft-balbus-sep28k-v1.
|
49 |
|
50 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
51 |
It achieves the following results on the evaluation set:
|
52 |
-
- Loss: 0.
|
53 |
-
- Accuracy:
|
54 |
-
- Precision:
|
55 |
-
- Recall:
|
56 |
-
- F1:
|
|
|
57 |
|
58 |
## Model description
|
59 |
|
@@ -72,7 +69,7 @@ More information needed
|
|
72 |
### Training hyperparameters
|
73 |
|
74 |
The following hyperparameters were used during training:
|
75 |
-
- learning_rate:
|
76 |
- train_batch_size: 16
|
77 |
- eval_batch_size: 8
|
78 |
- seed: 42
|
@@ -81,23 +78,19 @@ The following hyperparameters were used during training:
|
|
81 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
82 |
- lr_scheduler_type: linear
|
83 |
- lr_scheduler_warmup_ratio: 0.5
|
84 |
-
- training_steps:
|
85 |
- mixed_precision_training: Native AMP
|
86 |
|
87 |
### Training results
|
88 |
|
89 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy
|
90 |
-
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.1072 | 0.8772 | 700 | 0.1074 | {'accuracy': 0.8096208085239737} | {'precision': 0.8282490597576264} | {'recall': 0.7114142139267767} | {'f1': 0.765398725622707} |
|
98 |
-
| 0.106 | 1.0025 | 800 | 0.1078 | {'accuracy': 0.8077405202130994} | {'precision': 0.8175152749490835} | {'recall': 0.7203876525484566} | {'f1': 0.7658843732112193} |
|
99 |
-
| 0.1001 | 1.1278 | 900 | 0.1079 | {'accuracy': 0.810404261986838} | {'precision': 0.8174858984689767} | {'recall': 0.7282842785355348} | {'f1': 0.7703113135914958} |
|
100 |
-
| 0.092 | 1.2531 | 1000 | 0.1083 | {'accuracy': 0.8111877154497023} | {'precision': 0.8133174791914387} | {'recall': 0.7365398420674802} | {'f1': 0.7730269353927294} |
|
101 |
|
102 |
|
103 |
### Framework versions
|
|
|
12 |
- recall
|
13 |
- f1
|
14 |
model-index:
|
15 |
+
- name: miosipof/whisper-small-ft-balbus-sep28k-v1.6
|
16 |
results:
|
17 |
- task:
|
18 |
name: Audio Classification
|
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
+
value: 0.8100908806016922
|
|
|
30 |
- name: Precision
|
31 |
type: precision
|
32 |
+
value: 0.8183656957928802
|
|
|
33 |
- name: Recall
|
34 |
type: recall
|
35 |
+
value: 0.7261306532663316
|
|
|
36 |
- name: F1
|
37 |
type: f1
|
38 |
+
value: 0.7694941042221377
|
|
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
should probably proofread and complete it, then remove this comment. -->
|
43 |
|
44 |
+
# miosipof/whisper-small-ft-balbus-sep28k-v1.6
|
45 |
|
46 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1091
|
49 |
+
- Accuracy: 0.8101
|
50 |
+
- Precision: 0.8184
|
51 |
+
- Recall: 0.7261
|
52 |
+
- F1: 0.7695
|
53 |
+
- Roc-auc: 0.8006
|
54 |
|
55 |
## Model description
|
56 |
|
|
|
69 |
### Training hyperparameters
|
70 |
|
71 |
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 2e-06
|
73 |
- train_batch_size: 16
|
74 |
- eval_batch_size: 8
|
75 |
- seed: 42
|
|
|
78 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
- lr_scheduler_type: linear
|
80 |
- lr_scheduler_warmup_ratio: 0.5
|
81 |
+
- training_steps: 1200
|
82 |
- mixed_precision_training: Native AMP
|
83 |
|
84 |
### Training results
|
85 |
|
86 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
|
87 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
88 |
+
| 0.1683 | 0.2506 | 200 | 0.1682 | 0.5730 | 0.7364 | 0.0341 | 0.0652 | 0.5123 |
|
89 |
+
| 0.1494 | 0.5013 | 400 | 0.1446 | 0.7084 | 0.6603 | 0.6838 | 0.6718 | 0.7056 |
|
90 |
+
| 0.1212 | 0.7519 | 600 | 0.1236 | 0.7629 | 0.6917 | 0.8245 | 0.7523 | 0.7699 |
|
91 |
+
| 0.1088 | 1.0025 | 800 | 0.1107 | 0.8062 | 0.8337 | 0.6945 | 0.7578 | 0.7936 |
|
92 |
+
| 0.0955 | 1.2531 | 1000 | 0.1106 | 0.8081 | 0.8036 | 0.7416 | 0.7713 | 0.8006 |
|
93 |
+
| 0.0997 | 1.5038 | 1200 | 0.1091 | 0.8101 | 0.8184 | 0.7261 | 0.7695 | 0.8006 |
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
### Framework versions
|