miosipof's picture
End of training
31669fc verified
|
raw
history blame
2.85 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: miosipof/whisper-small-ft-balbus-sep28k-v1.6
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8100908806016922
          - name: Precision
            type: precision
            value: 0.8183656957928802
          - name: Recall
            type: recall
            value: 0.7261306532663316
          - name: F1
            type: f1
            value: 0.7694941042221377

miosipof/whisper-small-ft-balbus-sep28k-v1.6

This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1091
  • Accuracy: 0.8101
  • Precision: 0.8184
  • Recall: 0.7261
  • F1: 0.7695
  • Roc-auc: 0.8006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 1200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc-auc
0.1683 0.2506 200 0.1682 0.5730 0.7364 0.0341 0.0652 0.5123
0.1494 0.5013 400 0.1446 0.7084 0.6603 0.6838 0.6718 0.7056
0.1212 0.7519 600 0.1236 0.7629 0.6917 0.8245 0.7523 0.7699
0.1088 1.0025 800 0.1107 0.8062 0.8337 0.6945 0.7578 0.7936
0.0955 1.2531 1000 0.1106 0.8081 0.8036 0.7416 0.7713 0.8006
0.0997 1.5038 1200 0.1091 0.8101 0.8184 0.7261 0.7695 0.8006

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3