|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- clinc_oos |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-clinc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: clinc_oos |
|
type: clinc_oos |
|
args: plus |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9148387096774193 |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: clinc_oos |
|
type: clinc_oos |
|
config: small |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8627272727272727 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.861664336839455 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.8627272727272727 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.8787483927993249 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.9187704194260485 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.8627272727272727 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.8627272727272727 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8842101413648463 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.8627272727272727 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.8585620882832584 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.9942931532859802 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-clinc |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the clinc_oos dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7760 |
|
- Accuracy: 0.9148 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 48 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 4.2994 | 1.0 | 318 | 3.3016 | 0.7442 | |
|
| 2.6387 | 2.0 | 636 | 1.8892 | 0.8339 | |
|
| 1.5535 | 3.0 | 954 | 1.1602 | 0.8948 | |
|
| 1.0139 | 4.0 | 1272 | 0.8619 | 0.9084 | |
|
| 0.7936 | 5.0 | 1590 | 0.7760 | 0.9148 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.6 |
|
|