metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9148387096774193
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
config: small
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8627272727272727
verified: true
- name: Precision Macro
type: precision
value: 0.861664336839455
verified: true
- name: Precision Micro
type: precision
value: 0.8627272727272727
verified: true
- name: Precision Weighted
type: precision
value: 0.8787483927993249
verified: true
- name: Recall Macro
type: recall
value: 0.9187704194260485
verified: true
- name: Recall Micro
type: recall
value: 0.8627272727272727
verified: true
- name: Recall Weighted
type: recall
value: 0.8627272727272727
verified: true
- name: F1 Macro
type: f1
value: 0.8842101413648463
verified: true
- name: F1 Micro
type: f1
value: 0.8627272727272727
verified: true
- name: F1 Weighted
type: f1
value: 0.8585620882832584
verified: true
- name: loss
type: loss
value: 0.9942931532859802
verified: true
distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.7760
- Accuracy: 0.9148
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.2994 | 1.0 | 318 | 3.3016 | 0.7442 |
2.6387 | 2.0 | 636 | 1.8892 | 0.8339 |
1.5535 | 3.0 | 954 | 1.1602 | 0.8948 |
1.0139 | 4.0 | 1272 | 0.8619 | 0.9084 |
0.7936 | 5.0 | 1590 | 0.7760 | 0.9148 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.6