metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Si dins el termini que s'hagi atorgat amb aquesta finalitat els habitatges
que en disposen no s'han adaptat, la llicència pot ésser revocada.
sentences:
- Qui pot sol·licitar la pròrroga de la prestació?
- >-
Quin és el resultat de la constatació dels fets denunciats per part de
l'Ajuntament?
- >-
Què passa si no s'adapten els habitatges d'ús turístic dins el termini
establert?
- source_sentence: >-
En cas que a la sepultura hi hagi despulles, la persona titular podrà
triar entre traslladar-les a una altra sepultura de la què en sigui el/la
titular o bé que l'Ajuntament les traslladi a l'ossera general.
sentences:
- >-
Què passa amb les despulles si la persona titular decideix
traslladar-les a una altra sepultura?
- Quins són els beneficis de la llicència de publicitat dinàmica?
- >-
Quan es va aprovar els models d'aval per part de la Junta de Govern
Local?
- source_sentence: >-
La colònia felina té un paper important en la reducció del nombre
d'animals abandonats, ja que proporciona un refugi segur i un entorn
adequat per als animals que es troben en situació de risc o abandonament.
sentences:
- >-
Quin és el termini per justificar la realització del projecte/activitat
subvencionada?
- >-
Quins són els tractaments mèdics que beneficien la salut de l'empleat
municipal?
- >-
Quin és el paper de la colònia felina en la reducció del nombre
d'animals abandonats?
- source_sentence: >-
La realització de les obres que s’indiquen a continuació està subjecta a
l’obtenció d’una llicència d’obra major atorgada per l’Ajuntament: ...
Compartimentació de naus industrials existents...
sentences:
- >-
Quin tipus d’obra es refereix a la compartimentació de naus industrials
existents?
- >-
Quin és el benefici principal del tràmit de canvi de titular de la
llicència de gual?
- >-
Quin és el tipus de garantia que es pot fer mitjançant una assegurança
de caució?
- source_sentence: >-
Els membres de la Corporació tenen dret a obtenir dels òrgans de
l'Ajuntament les dades o informacions...
sentences:
- >-
Quin és el paper dels òrgans de l'Ajuntament en relació amb les
sol·licituds dels membres de la Corporació?
- >-
Quin és el motiu principal perquè un beneficiari pugui perdre el dret a
una subvenció?
- Quin és el benefici de la presentació de recursos?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.07543103448275862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14439655172413793
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21336206896551724
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3900862068965517
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07543103448275862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.048132183908045974
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04267241379310344
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.039008620689655174
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07543103448275862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14439655172413793
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21336206896551724
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3900862068965517
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19775448839983267
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14087729200875768
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1670966505747688
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.07543103448275862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.1400862068965517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3922413793103448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07543103448275862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.046695402298850566
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04181034482758621
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03922413793103448
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07543103448275862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1400862068965517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3922413793103448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1973388128367381
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14006910235358525
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1660059682423787
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.07112068965517242
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14439655172413793
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3793103448275862
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07112068965517242
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.048132183908045974
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04181034482758621
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03793103448275861
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07112068965517242
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14439655172413793
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3793103448275862
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19451734912520316
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13957307060755345
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1658323397622155
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.06465517241379311
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13793103448275862
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21336206896551724
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3577586206896552
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06465517241379311
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04597701149425287
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04267241379310345
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03577586206896552
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06465517241379311
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13793103448275862
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21336206896551724
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3577586206896552
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18381656342161204
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13181616037219498
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.15919561658705733
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.06896551724137931
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13577586206896552
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.35344827586206895
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06896551724137931
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04525862068965517
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.041810344827586214
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03534482758620689
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06896551724137931
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13577586206896552
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.35344827586206895
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18256713591724985
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.131704980842912
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1580121500031178
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/sitges2608bai-4ep")
sentences = [
"Els membres de la Corporació tenen dret a obtenir dels òrgans de l'Ajuntament les dades o informacions...",
"Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels membres de la Corporació?",
'Quin és el benefici de la presentació de recursos?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0754 |
cosine_accuracy@3 |
0.1444 |
cosine_accuracy@5 |
0.2134 |
cosine_accuracy@10 |
0.3901 |
cosine_precision@1 |
0.0754 |
cosine_precision@3 |
0.0481 |
cosine_precision@5 |
0.0427 |
cosine_precision@10 |
0.039 |
cosine_recall@1 |
0.0754 |
cosine_recall@3 |
0.1444 |
cosine_recall@5 |
0.2134 |
cosine_recall@10 |
0.3901 |
cosine_ndcg@10 |
0.1978 |
cosine_mrr@10 |
0.1409 |
cosine_map@100 |
0.1671 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0754 |
cosine_accuracy@3 |
0.1401 |
cosine_accuracy@5 |
0.2091 |
cosine_accuracy@10 |
0.3922 |
cosine_precision@1 |
0.0754 |
cosine_precision@3 |
0.0467 |
cosine_precision@5 |
0.0418 |
cosine_precision@10 |
0.0392 |
cosine_recall@1 |
0.0754 |
cosine_recall@3 |
0.1401 |
cosine_recall@5 |
0.2091 |
cosine_recall@10 |
0.3922 |
cosine_ndcg@10 |
0.1973 |
cosine_mrr@10 |
0.1401 |
cosine_map@100 |
0.166 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0711 |
cosine_accuracy@3 |
0.1444 |
cosine_accuracy@5 |
0.2091 |
cosine_accuracy@10 |
0.3793 |
cosine_precision@1 |
0.0711 |
cosine_precision@3 |
0.0481 |
cosine_precision@5 |
0.0418 |
cosine_precision@10 |
0.0379 |
cosine_recall@1 |
0.0711 |
cosine_recall@3 |
0.1444 |
cosine_recall@5 |
0.2091 |
cosine_recall@10 |
0.3793 |
cosine_ndcg@10 |
0.1945 |
cosine_mrr@10 |
0.1396 |
cosine_map@100 |
0.1658 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0647 |
cosine_accuracy@3 |
0.1379 |
cosine_accuracy@5 |
0.2134 |
cosine_accuracy@10 |
0.3578 |
cosine_precision@1 |
0.0647 |
cosine_precision@3 |
0.046 |
cosine_precision@5 |
0.0427 |
cosine_precision@10 |
0.0358 |
cosine_recall@1 |
0.0647 |
cosine_recall@3 |
0.1379 |
cosine_recall@5 |
0.2134 |
cosine_recall@10 |
0.3578 |
cosine_ndcg@10 |
0.1838 |
cosine_mrr@10 |
0.1318 |
cosine_map@100 |
0.1592 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.069 |
cosine_accuracy@3 |
0.1358 |
cosine_accuracy@5 |
0.2091 |
cosine_accuracy@10 |
0.3534 |
cosine_precision@1 |
0.069 |
cosine_precision@3 |
0.0453 |
cosine_precision@5 |
0.0418 |
cosine_precision@10 |
0.0353 |
cosine_recall@1 |
0.069 |
cosine_recall@3 |
0.1358 |
cosine_recall@5 |
0.2091 |
cosine_recall@10 |
0.3534 |
cosine_ndcg@10 |
0.1826 |
cosine_mrr@10 |
0.1317 |
cosine_map@100 |
0.158 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 48.65 tokens
- max: 125 tokens
|
- min: 10 tokens
- mean: 20.96 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Quan es produeix la caducitat del dret funerari per haver transcorregut el termini de concessió i un cop que l'Ajuntament hagi resolt el procediment legalment establert per a la declaració de caducitat, és imprescindible formalitzar la nova concessió del dret. |
Quan es produeix la caducitat del dret funerari? |
Les persones beneficiàries de l'ajut per a la creació de noves empreses per persones donades d'alta al règim especial de treballadors autònoms. |
Quin és el tipus de persones que poden beneficiar-se de l'ajut? |
Les entitats beneficiàries són les responsables de la gestió dels recursos econòmics i materials assignats per a la realització del projecte o activitat subvencionat. |
Quin és el paper de les entitats beneficiàries en la gestió dels recursos? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 2
per_device_eval_batch_size
: 2
gradient_accumulation_steps
: 2
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 2
per_device_eval_batch_size
: 2
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0096 |
10 |
0.4269 |
- |
- |
- |
- |
- |
0.0192 |
20 |
0.2328 |
- |
- |
- |
- |
- |
0.0287 |
30 |
0.2803 |
- |
- |
- |
- |
- |
0.0383 |
40 |
0.312 |
- |
- |
- |
- |
- |
0.0479 |
50 |
0.0631 |
- |
- |
- |
- |
- |
0.0575 |
60 |
0.1824 |
- |
- |
- |
- |
- |
0.0671 |
70 |
0.3102 |
- |
- |
- |
- |
- |
0.0767 |
80 |
0.2966 |
- |
- |
- |
- |
- |
0.0862 |
90 |
0.3715 |
- |
- |
- |
- |
- |
0.0958 |
100 |
0.0719 |
- |
- |
- |
- |
- |
0.1054 |
110 |
0.279 |
- |
- |
- |
- |
- |
0.1150 |
120 |
0.0954 |
- |
- |
- |
- |
- |
0.1246 |
130 |
0.4912 |
- |
- |
- |
- |
- |
0.1342 |
140 |
0.2877 |
- |
- |
- |
- |
- |
0.1437 |
150 |
0.1933 |
- |
- |
- |
- |
- |
0.1533 |
160 |
0.5942 |
- |
- |
- |
- |
- |
0.1629 |
170 |
0.1336 |
- |
- |
- |
- |
- |
0.1725 |
180 |
0.1755 |
- |
- |
- |
- |
- |
0.1821 |
190 |
0.1455 |
- |
- |
- |
- |
- |
0.1917 |
200 |
0.4391 |
- |
- |
- |
- |
- |
0.2012 |
210 |
0.0567 |
- |
- |
- |
- |
- |
0.2108 |
220 |
0.2368 |
- |
- |
- |
- |
- |
0.2204 |
230 |
0.0249 |
- |
- |
- |
- |
- |
0.2300 |
240 |
0.0518 |
- |
- |
- |
- |
- |
0.2396 |
250 |
0.015 |
- |
- |
- |
- |
- |
0.2492 |
260 |
0.4096 |
- |
- |
- |
- |
- |
0.2587 |
270 |
0.115 |
- |
- |
- |
- |
- |
0.2683 |
280 |
0.0532 |
- |
- |
- |
- |
- |
0.2779 |
290 |
0.0407 |
- |
- |
- |
- |
- |
0.2875 |
300 |
0.082 |
- |
- |
- |
- |
- |
0.2971 |
310 |
0.1086 |
- |
- |
- |
- |
- |
0.3067 |
320 |
0.0345 |
- |
- |
- |
- |
- |
0.3162 |
330 |
0.3144 |
- |
- |
- |
- |
- |
0.3258 |
340 |
0.0056 |
- |
- |
- |
- |
- |
0.3354 |
350 |
0.0867 |
- |
- |
- |
- |
- |
0.3450 |
360 |
0.1011 |
- |
- |
- |
- |
- |
0.3546 |
370 |
0.6417 |
- |
- |
- |
- |
- |
0.3642 |
380 |
0.0689 |
- |
- |
- |
- |
- |
0.3737 |
390 |
0.0075 |
- |
- |
- |
- |
- |
0.3833 |
400 |
0.0822 |
- |
- |
- |
- |
- |
0.3929 |
410 |
0.098 |
- |
- |
- |
- |
- |
0.4025 |
420 |
0.0442 |
- |
- |
- |
- |
- |
0.4121 |
430 |
0.1759 |
- |
- |
- |
- |
- |
0.4217 |
440 |
0.2625 |
- |
- |
- |
- |
- |
0.4312 |
450 |
0.1123 |
- |
- |
- |
- |
- |
0.4408 |
460 |
0.1174 |
- |
- |
- |
- |
- |
0.4504 |
470 |
0.0529 |
- |
- |
- |
- |
- |
0.4600 |
480 |
0.5396 |
- |
- |
- |
- |
- |
0.4696 |
490 |
0.1985 |
- |
- |
- |
- |
- |
0.4792 |
500 |
0.0016 |
- |
- |
- |
- |
- |
0.4887 |
510 |
0.0496 |
- |
- |
- |
- |
- |
0.4983 |
520 |
0.3138 |
- |
- |
- |
- |
- |
0.5079 |
530 |
0.1974 |
- |
- |
- |
- |
- |
0.5175 |
540 |
0.3489 |
- |
- |
- |
- |
- |
0.5271 |
550 |
0.3332 |
- |
- |
- |
- |
- |
0.5367 |
560 |
0.7838 |
- |
- |
- |
- |
- |
0.5462 |
570 |
0.8335 |
- |
- |
- |
- |
- |
0.5558 |
580 |
0.5018 |
- |
- |
- |
- |
- |
0.5654 |
590 |
0.3391 |
- |
- |
- |
- |
- |
0.5750 |
600 |
0.0055 |
- |
- |
- |
- |
- |
0.5846 |
610 |
0.0264 |
- |
- |
- |
- |
- |
0.5942 |
620 |
0.1397 |
- |
- |
- |
- |
- |
0.6037 |
630 |
0.1114 |
- |
- |
- |
- |
- |
0.6133 |
640 |
0.337 |
- |
- |
- |
- |
- |
0.6229 |
650 |
0.0027 |
- |
- |
- |
- |
- |
0.6325 |
660 |
0.1454 |
- |
- |
- |
- |
- |
0.6421 |
670 |
0.2212 |
- |
- |
- |
- |
- |
0.6517 |
680 |
0.0472 |
- |
- |
- |
- |
- |
0.6612 |
690 |
0.6882 |
- |
- |
- |
- |
- |
0.6708 |
700 |
0.0266 |
- |
- |
- |
- |
- |
0.6804 |
710 |
1.0057 |
- |
- |
- |
- |
- |
0.6900 |
720 |
0.1456 |
- |
- |
- |
- |
- |
0.6996 |
730 |
0.4195 |
- |
- |
- |
- |
- |
0.7092 |
740 |
0.0732 |
- |
- |
- |
- |
- |
0.7187 |
750 |
0.0588 |
- |
- |
- |
- |
- |
0.7283 |
760 |
0.0033 |
- |
- |
- |
- |
- |
0.7379 |
770 |
0.0156 |
- |
- |
- |
- |
- |
0.7475 |
780 |
0.0997 |
- |
- |
- |
- |
- |
0.7571 |
790 |
0.856 |
- |
- |
- |
- |
- |
0.7667 |
800 |
0.2394 |
- |
- |
- |
- |
- |
0.7762 |
810 |
0.0322 |
- |
- |
- |
- |
- |
0.7858 |
820 |
0.1821 |
- |
- |
- |
- |
- |
0.7954 |
830 |
0.1883 |
- |
- |
- |
- |
- |
0.8050 |
840 |
0.0994 |
- |
- |
- |
- |
- |
0.8146 |
850 |
0.3889 |
- |
- |
- |
- |
- |
0.8241 |
860 |
0.0221 |
- |
- |
- |
- |
- |
0.8337 |
870 |
0.0106 |
- |
- |
- |
- |
- |
0.8433 |
880 |
0.0031 |
- |
- |
- |
- |
- |
0.8529 |
890 |
0.1453 |
- |
- |
- |
- |
- |
0.8625 |
900 |
0.487 |
- |
- |
- |
- |
- |
0.8721 |
910 |
0.2987 |
- |
- |
- |
- |
- |
0.8816 |
920 |
0.0347 |
- |
- |
- |
- |
- |
0.8912 |
930 |
0.2024 |
- |
- |
- |
- |
- |
0.9008 |
940 |
0.0087 |
- |
- |
- |
- |
- |
0.9104 |
950 |
0.3944 |
- |
- |
- |
- |
- |
0.9200 |
960 |
0.0935 |
- |
- |
- |
- |
- |
0.9296 |
970 |
0.2408 |
- |
- |
- |
- |
- |
0.9391 |
980 |
0.1545 |
- |
- |
- |
- |
- |
0.9487 |
990 |
0.1168 |
- |
- |
- |
- |
- |
0.9583 |
1000 |
0.0051 |
- |
- |
- |
- |
- |
0.9679 |
1010 |
0.681 |
- |
- |
- |
- |
- |
0.9775 |
1020 |
0.0198 |
- |
- |
- |
- |
- |
0.9871 |
1030 |
0.7243 |
- |
- |
- |
- |
- |
0.9966 |
1040 |
0.0341 |
- |
- |
- |
- |
- |
0.9995 |
1043 |
- |
0.1608 |
0.1639 |
0.1678 |
0.1526 |
0.1610 |
1.0062 |
1050 |
0.001 |
- |
- |
- |
- |
- |
1.0158 |
1060 |
0.0864 |
- |
- |
- |
- |
- |
1.0254 |
1070 |
0.0209 |
- |
- |
- |
- |
- |
1.0350 |
1080 |
0.2703 |
- |
- |
- |
- |
- |
1.0446 |
1090 |
0.1857 |
- |
- |
- |
- |
- |
1.0541 |
1100 |
0.0032 |
- |
- |
- |
- |
- |
1.0637 |
1110 |
0.118 |
- |
- |
- |
- |
- |
1.0733 |
1120 |
0.0029 |
- |
- |
- |
- |
- |
1.0829 |
1130 |
0.0393 |
- |
- |
- |
- |
- |
1.0925 |
1140 |
0.3103 |
- |
- |
- |
- |
- |
1.1021 |
1150 |
0.0323 |
- |
- |
- |
- |
- |
1.1116 |
1160 |
0.0925 |
- |
- |
- |
- |
- |
1.1212 |
1170 |
0.0963 |
- |
- |
- |
- |
- |
1.1308 |
1180 |
0.0481 |
- |
- |
- |
- |
- |
1.1404 |
1190 |
0.0396 |
- |
- |
- |
- |
- |
1.1500 |
1200 |
0.0033 |
- |
- |
- |
- |
- |
1.1596 |
1210 |
0.1555 |
- |
- |
- |
- |
- |
1.1691 |
1220 |
0.0938 |
- |
- |
- |
- |
- |
1.1787 |
1230 |
0.1347 |
- |
- |
- |
- |
- |
1.1883 |
1240 |
0.3057 |
- |
- |
- |
- |
- |
1.1979 |
1250 |
0.0005 |
- |
- |
- |
- |
- |
1.2075 |
1260 |
0.0634 |
- |
- |
- |
- |
- |
1.2171 |
1270 |
0.0013 |
- |
- |
- |
- |
- |
1.2266 |
1280 |
0.0012 |
- |
- |
- |
- |
- |
1.2362 |
1290 |
0.0119 |
- |
- |
- |
- |
- |
1.2458 |
1300 |
0.002 |
- |
- |
- |
- |
- |
1.2554 |
1310 |
0.016 |
- |
- |
- |
- |
- |
1.2650 |
1320 |
0.0169 |
- |
- |
- |
- |
- |
1.2746 |
1330 |
0.0332 |
- |
- |
- |
- |
- |
1.2841 |
1340 |
0.0076 |
- |
- |
- |
- |
- |
1.2937 |
1350 |
0.0029 |
- |
- |
- |
- |
- |
1.3033 |
1360 |
0.0011 |
- |
- |
- |
- |
- |
1.3129 |
1370 |
0.0477 |
- |
- |
- |
- |
- |
1.3225 |
1380 |
0.014 |
- |
- |
- |
- |
- |
1.3321 |
1390 |
0.0002 |
- |
- |
- |
- |
- |
1.3416 |
1400 |
0.012 |
- |
- |
- |
- |
- |
1.3512 |
1410 |
0.0175 |
- |
- |
- |
- |
- |
1.3608 |
1420 |
0.0088 |
- |
- |
- |
- |
- |
1.3704 |
1430 |
0.0022 |
- |
- |
- |
- |
- |
1.3800 |
1440 |
0.0007 |
- |
- |
- |
- |
- |
1.3896 |
1450 |
0.0098 |
- |
- |
- |
- |
- |
1.3991 |
1460 |
0.0003 |
- |
- |
- |
- |
- |
1.4087 |
1470 |
0.0804 |
- |
- |
- |
- |
- |
1.4183 |
1480 |
0.0055 |
- |
- |
- |
- |
- |
1.4279 |
1490 |
0.1131 |
- |
- |
- |
- |
- |
1.4375 |
1500 |
0.0018 |
- |
- |
- |
- |
- |
1.4471 |
1510 |
0.0002 |
- |
- |
- |
- |
- |
1.4566 |
1520 |
0.0143 |
- |
- |
- |
- |
- |
1.4662 |
1530 |
0.0876 |
- |
- |
- |
- |
- |
1.4758 |
1540 |
0.003 |
- |
- |
- |
- |
- |
1.4854 |
1550 |
0.0087 |
- |
- |
- |
- |
- |
1.4950 |
1560 |
0.0005 |
- |
- |
- |
- |
- |
1.5046 |
1570 |
0.0002 |
- |
- |
- |
- |
- |
1.5141 |
1580 |
0.1614 |
- |
- |
- |
- |
- |
1.5237 |
1590 |
0.0017 |
- |
- |
- |
- |
- |
1.5333 |
1600 |
0.0013 |
- |
- |
- |
- |
- |
1.5429 |
1610 |
0.0041 |
- |
- |
- |
- |
- |
1.5525 |
1620 |
0.0021 |
- |
- |
- |
- |
- |
1.5621 |
1630 |
0.1113 |
- |
- |
- |
- |
- |
1.5716 |
1640 |
0.0003 |
- |
- |
- |
- |
- |
1.5812 |
1650 |
0.0003 |
- |
- |
- |
- |
- |
1.5908 |
1660 |
0.0018 |
- |
- |
- |
- |
- |
1.6004 |
1670 |
0.0004 |
- |
- |
- |
- |
- |
1.6100 |
1680 |
0.0003 |
- |
- |
- |
- |
- |
1.6195 |
1690 |
0.0017 |
- |
- |
- |
- |
- |
1.6291 |
1700 |
0.0023 |
- |
- |
- |
- |
- |
1.6387 |
1710 |
0.0167 |
- |
- |
- |
- |
- |
1.6483 |
1720 |
0.0023 |
- |
- |
- |
- |
- |
1.6579 |
1730 |
0.0095 |
- |
- |
- |
- |
- |
1.6675 |
1740 |
0.0005 |
- |
- |
- |
- |
- |
1.6770 |
1750 |
0.0014 |
- |
- |
- |
- |
- |
1.6866 |
1760 |
0.0007 |
- |
- |
- |
- |
- |
1.6962 |
1770 |
0.0014 |
- |
- |
- |
- |
- |
1.7058 |
1780 |
0.0 |
- |
- |
- |
- |
- |
1.7154 |
1790 |
0.0016 |
- |
- |
- |
- |
- |
1.7250 |
1800 |
0.0004 |
- |
- |
- |
- |
- |
1.7345 |
1810 |
0.0007 |
- |
- |
- |
- |
- |
1.7441 |
1820 |
0.3356 |
- |
- |
- |
- |
- |
1.7537 |
1830 |
0.001 |
- |
- |
- |
- |
- |
1.7633 |
1840 |
0.0436 |
- |
- |
- |
- |
- |
1.7729 |
1850 |
0.0839 |
- |
- |
- |
- |
- |
1.7825 |
1860 |
0.0019 |
- |
- |
- |
- |
- |
1.7920 |
1870 |
0.0406 |
- |
- |
- |
- |
- |
1.8016 |
1880 |
0.0496 |
- |
- |
- |
- |
- |
1.8112 |
1890 |
0.0164 |
- |
- |
- |
- |
- |
1.8208 |
1900 |
0.0118 |
- |
- |
- |
- |
- |
1.8304 |
1910 |
0.001 |
- |
- |
- |
- |
- |
1.8400 |
1920 |
0.0004 |
- |
- |
- |
- |
- |
1.8495 |
1930 |
0.002 |
- |
- |
- |
- |
- |
1.8591 |
1940 |
0.0051 |
- |
- |
- |
- |
- |
1.8687 |
1950 |
0.0624 |
- |
- |
- |
- |
- |
1.8783 |
1960 |
0.0033 |
- |
- |
- |
- |
- |
1.8879 |
1970 |
0.0001 |
- |
- |
- |
- |
- |
1.8975 |
1980 |
0.1594 |
- |
- |
- |
- |
- |
1.9070 |
1990 |
0.007 |
- |
- |
- |
- |
- |
1.9166 |
2000 |
0.0002 |
- |
- |
- |
- |
- |
1.9262 |
2010 |
0.0012 |
- |
- |
- |
- |
- |
1.9358 |
2020 |
0.0011 |
- |
- |
- |
- |
- |
1.9454 |
2030 |
0.0264 |
- |
- |
- |
- |
- |
1.9550 |
2040 |
0.0004 |
- |
- |
- |
- |
- |
1.9645 |
2050 |
0.008 |
- |
- |
- |
- |
- |
1.9741 |
2060 |
0.1025 |
- |
- |
- |
- |
- |
1.9837 |
2070 |
0.0745 |
- |
- |
- |
- |
- |
1.9933 |
2080 |
0.006 |
- |
- |
- |
- |
- |
2.0 |
2087 |
- |
0.1609 |
0.1644 |
0.1708 |
0.1499 |
0.1696 |
2.0029 |
2090 |
0.001 |
- |
- |
- |
- |
- |
2.0125 |
2100 |
0.0004 |
- |
- |
- |
- |
- |
2.0220 |
2110 |
0.0003 |
- |
- |
- |
- |
- |
2.0316 |
2120 |
0.0001 |
- |
- |
- |
- |
- |
2.0412 |
2130 |
0.0003 |
- |
- |
- |
- |
- |
2.0508 |
2140 |
0.0002 |
- |
- |
- |
- |
- |
2.0604 |
2150 |
0.0006 |
- |
- |
- |
- |
- |
2.0700 |
2160 |
0.04 |
- |
- |
- |
- |
- |
2.0795 |
2170 |
0.0055 |
- |
- |
- |
- |
- |
2.0891 |
2180 |
0.1454 |
- |
- |
- |
- |
- |
2.0987 |
2190 |
0.0029 |
- |
- |
- |
- |
- |
2.1083 |
2200 |
0.0006 |
- |
- |
- |
- |
- |
2.1179 |
2210 |
0.0001 |
- |
- |
- |
- |
- |
2.1275 |
2220 |
0.0129 |
- |
- |
- |
- |
- |
2.1370 |
2230 |
0.0001 |
- |
- |
- |
- |
- |
2.1466 |
2240 |
0.0003 |
- |
- |
- |
- |
- |
2.1562 |
2250 |
0.4145 |
- |
- |
- |
- |
- |
2.1658 |
2260 |
0.0048 |
- |
- |
- |
- |
- |
2.1754 |
2270 |
0.0706 |
- |
- |
- |
- |
- |
2.1850 |
2280 |
0.0026 |
- |
- |
- |
- |
- |
2.1945 |
2290 |
0.008 |
- |
- |
- |
- |
- |
2.2041 |
2300 |
0.0051 |
- |
- |
- |
- |
- |
2.2137 |
2310 |
0.0307 |
- |
- |
- |
- |
- |
2.2233 |
2320 |
0.0017 |
- |
- |
- |
- |
- |
2.2329 |
2330 |
0.0005 |
- |
- |
- |
- |
- |
2.2425 |
2340 |
0.0001 |
- |
- |
- |
- |
- |
2.2520 |
2350 |
0.0001 |
- |
- |
- |
- |
- |
2.2616 |
2360 |
0.0001 |
- |
- |
- |
- |
- |
2.2712 |
2370 |
0.0461 |
- |
- |
- |
- |
- |
2.2808 |
2380 |
0.0001 |
- |
- |
- |
- |
- |
2.2904 |
2390 |
0.0003 |
- |
- |
- |
- |
- |
2.3000 |
2400 |
0.001 |
- |
- |
- |
- |
- |
2.3095 |
2410 |
0.0002 |
- |
- |
- |
- |
- |
2.3191 |
2420 |
0.1568 |
- |
- |
- |
- |
- |
2.3287 |
2430 |
0.0001 |
- |
- |
- |
- |
- |
2.3383 |
2440 |
0.0005 |
- |
- |
- |
- |
- |
2.3479 |
2450 |
0.0072 |
- |
- |
- |
- |
- |
2.3575 |
2460 |
0.014 |
- |
- |
- |
- |
- |
2.3670 |
2470 |
0.0003 |
- |
- |
- |
- |
- |
2.3766 |
2480 |
0.0 |
- |
- |
- |
- |
- |
2.3862 |
2490 |
0.0001 |
- |
- |
- |
- |
- |
2.3958 |
2500 |
0.0008 |
- |
- |
- |
- |
- |
2.4054 |
2510 |
0.0 |
- |
- |
- |
- |
- |
2.4149 |
2520 |
0.0002 |
- |
- |
- |
- |
- |
2.4245 |
2530 |
0.061 |
- |
- |
- |
- |
- |
2.4341 |
2540 |
0.0005 |
- |
- |
- |
- |
- |
2.4437 |
2550 |
0.0 |
- |
- |
- |
- |
- |
2.4533 |
2560 |
0.0003 |
- |
- |
- |
- |
- |
2.4629 |
2570 |
0.0095 |
- |
- |
- |
- |
- |
2.4724 |
2580 |
0.0002 |
- |
- |
- |
- |
- |
2.4820 |
2590 |
0.0 |
- |
- |
- |
- |
- |
2.4916 |
2600 |
0.0003 |
- |
- |
- |
- |
- |
2.5012 |
2610 |
0.0002 |
- |
- |
- |
- |
- |
2.5108 |
2620 |
0.0035 |
- |
- |
- |
- |
- |
2.5204 |
2630 |
0.0001 |
- |
- |
- |
- |
- |
2.5299 |
2640 |
0.0 |
- |
- |
- |
- |
- |
2.5395 |
2650 |
0.0017 |
- |
- |
- |
- |
- |
2.5491 |
2660 |
0.0 |
- |
- |
- |
- |
- |
2.5587 |
2670 |
0.0066 |
- |
- |
- |
- |
- |
2.5683 |
2680 |
0.0004 |
- |
- |
- |
- |
- |
2.5779 |
2690 |
0.0001 |
- |
- |
- |
- |
- |
2.5874 |
2700 |
0.0 |
- |
- |
- |
- |
- |
2.5970 |
2710 |
0.0 |
- |
- |
- |
- |
- |
2.6066 |
2720 |
0.131 |
- |
- |
- |
- |
- |
2.6162 |
2730 |
0.0001 |
- |
- |
- |
- |
- |
2.6258 |
2740 |
0.0001 |
- |
- |
- |
- |
- |
2.6354 |
2750 |
0.0001 |
- |
- |
- |
- |
- |
2.6449 |
2760 |
0.0 |
- |
- |
- |
- |
- |
2.6545 |
2770 |
0.0003 |
- |
- |
- |
- |
- |
2.6641 |
2780 |
0.0095 |
- |
- |
- |
- |
- |
2.6737 |
2790 |
0.0 |
- |
- |
- |
- |
- |
2.6833 |
2800 |
0.0003 |
- |
- |
- |
- |
- |
2.6929 |
2810 |
0.0001 |
- |
- |
- |
- |
- |
2.7024 |
2820 |
0.0002 |
- |
- |
- |
- |
- |
2.7120 |
2830 |
0.0007 |
- |
- |
- |
- |
- |
2.7216 |
2840 |
0.0008 |
- |
- |
- |
- |
- |
2.7312 |
2850 |
0.0 |
- |
- |
- |
- |
- |
2.7408 |
2860 |
0.0002 |
- |
- |
- |
- |
- |
2.7504 |
2870 |
0.0003 |
- |
- |
- |
- |
- |
2.7599 |
2880 |
0.0062 |
- |
- |
- |
- |
- |
2.7695 |
2890 |
0.0415 |
- |
- |
- |
- |
- |
2.7791 |
2900 |
0.0002 |
- |
- |
- |
- |
- |
2.7887 |
2910 |
0.0024 |
- |
- |
- |
- |
- |
2.7983 |
2920 |
0.0022 |
- |
- |
- |
- |
- |
2.8079 |
2930 |
0.0014 |
- |
- |
- |
- |
- |
2.8174 |
2940 |
0.1301 |
- |
- |
- |
- |
- |
2.8270 |
2950 |
0.0 |
- |
- |
- |
- |
- |
2.8366 |
2960 |
0.0 |
- |
- |
- |
- |
- |
2.8462 |
2970 |
0.0 |
- |
- |
- |
- |
- |
2.8558 |
2980 |
0.0006 |
- |
- |
- |
- |
- |
2.8654 |
2990 |
0.0 |
- |
- |
- |
- |
- |
2.8749 |
3000 |
0.0235 |
- |
- |
- |
- |
- |
2.8845 |
3010 |
0.0001 |
- |
- |
- |
- |
- |
2.8941 |
3020 |
0.0285 |
- |
- |
- |
- |
- |
2.9037 |
3030 |
0.0 |
- |
- |
- |
- |
- |
2.9133 |
3040 |
0.0002 |
- |
- |
- |
- |
- |
2.9229 |
3050 |
0.0 |
- |
- |
- |
- |
- |
2.9324 |
3060 |
0.0005 |
- |
- |
- |
- |
- |
2.9420 |
3070 |
0.0001 |
- |
- |
- |
- |
- |
2.9516 |
3080 |
0.0011 |
- |
- |
- |
- |
- |
2.9612 |
3090 |
0.0 |
- |
- |
- |
- |
- |
2.9708 |
3100 |
0.0001 |
- |
- |
- |
- |
- |
2.9804 |
3110 |
0.0046 |
- |
- |
- |
- |
- |
2.9899 |
3120 |
0.0001 |
- |
- |
- |
- |
- |
2.9995 |
3130 |
0.0005 |
0.1622 |
0.1647 |
0.1635 |
0.1564 |
0.1617 |
3.0091 |
3140 |
0.0 |
- |
- |
- |
- |
- |
3.0187 |
3150 |
0.0 |
- |
- |
- |
- |
- |
3.0283 |
3160 |
0.0 |
- |
- |
- |
- |
- |
3.0379 |
3170 |
0.0002 |
- |
- |
- |
- |
- |
3.0474 |
3180 |
0.0004 |
- |
- |
- |
- |
- |
3.0570 |
3190 |
0.1022 |
- |
- |
- |
- |
- |
3.0666 |
3200 |
0.0012 |
- |
- |
- |
- |
- |
3.0762 |
3210 |
0.0001 |
- |
- |
- |
- |
- |
3.0858 |
3220 |
0.0677 |
- |
- |
- |
- |
- |
3.0954 |
3230 |
0.0 |
- |
- |
- |
- |
- |
3.1049 |
3240 |
0.0002 |
- |
- |
- |
- |
- |
3.1145 |
3250 |
0.0001 |
- |
- |
- |
- |
- |
3.1241 |
3260 |
0.0005 |
- |
- |
- |
- |
- |
3.1337 |
3270 |
0.0002 |
- |
- |
- |
- |
- |
3.1433 |
3280 |
0.0 |
- |
- |
- |
- |
- |
3.1529 |
3290 |
0.0021 |
- |
- |
- |
- |
- |
3.1624 |
3300 |
0.0001 |
- |
- |
- |
- |
- |
3.1720 |
3310 |
0.0077 |
- |
- |
- |
- |
- |
3.1816 |
3320 |
0.0001 |
- |
- |
- |
- |
- |
3.1912 |
3330 |
0.1324 |
- |
- |
- |
- |
- |
3.2008 |
3340 |
0.0 |
- |
- |
- |
- |
- |
3.2103 |
3350 |
0.1278 |
- |
- |
- |
- |
- |
3.2199 |
3360 |
0.0001 |
- |
- |
- |
- |
- |
3.2295 |
3370 |
0.0 |
- |
- |
- |
- |
- |
3.2391 |
3380 |
0.0001 |
- |
- |
- |
- |
- |
3.2487 |
3390 |
0.0001 |
- |
- |
- |
- |
- |
3.2583 |
3400 |
0.0 |
- |
- |
- |
- |
- |
3.2678 |
3410 |
0.0001 |
- |
- |
- |
- |
- |
3.2774 |
3420 |
0.0 |
- |
- |
- |
- |
- |
3.2870 |
3430 |
0.0001 |
- |
- |
- |
- |
- |
3.2966 |
3440 |
0.0001 |
- |
- |
- |
- |
- |
3.3062 |
3450 |
0.0001 |
- |
- |
- |
- |
- |
3.3158 |
3460 |
0.0263 |
- |
- |
- |
- |
- |
3.3253 |
3470 |
0.0001 |
- |
- |
- |
- |
- |
3.3349 |
3480 |
0.0002 |
- |
- |
- |
- |
- |
3.3445 |
3490 |
0.0003 |
- |
- |
- |
- |
- |
3.3541 |
3500 |
0.0 |
- |
- |
- |
- |
- |
3.3637 |
3510 |
0.0 |
- |
- |
- |
- |
- |
3.3733 |
3520 |
0.0 |
- |
- |
- |
- |
- |
3.3828 |
3530 |
0.0002 |
- |
- |
- |
- |
- |
3.3924 |
3540 |
0.0001 |
- |
- |
- |
- |
- |
3.4020 |
3550 |
0.0 |
- |
- |
- |
- |
- |
3.4116 |
3560 |
0.0001 |
- |
- |
- |
- |
- |
3.4212 |
3570 |
0.0001 |
- |
- |
- |
- |
- |
3.4308 |
3580 |
0.0122 |
- |
- |
- |
- |
- |
3.4403 |
3590 |
0.0 |
- |
- |
- |
- |
- |
3.4499 |
3600 |
0.0001 |
- |
- |
- |
- |
- |
3.4595 |
3610 |
0.0003 |
- |
- |
- |
- |
- |
3.4691 |
3620 |
0.0 |
- |
- |
- |
- |
- |
3.4787 |
3630 |
0.0 |
- |
- |
- |
- |
- |
3.4883 |
3640 |
0.0001 |
- |
- |
- |
- |
- |
3.4978 |
3650 |
0.0 |
- |
- |
- |
- |
- |
3.5074 |
3660 |
0.0002 |
- |
- |
- |
- |
- |
3.5170 |
3670 |
0.0004 |
- |
- |
- |
- |
- |
3.5266 |
3680 |
0.0003 |
- |
- |
- |
- |
- |
3.5362 |
3690 |
0.0004 |
- |
- |
- |
- |
- |
3.5458 |
3700 |
0.0 |
- |
- |
- |
- |
- |
3.5553 |
3710 |
0.0001 |
- |
- |
- |
- |
- |
3.5649 |
3720 |
0.0001 |
- |
- |
- |
- |
- |
3.5745 |
3730 |
0.0 |
- |
- |
- |
- |
- |
3.5841 |
3740 |
0.0001 |
- |
- |
- |
- |
- |
3.5937 |
3750 |
0.0003 |
- |
- |
- |
- |
- |
3.6033 |
3760 |
0.0 |
- |
- |
- |
- |
- |
3.6128 |
3770 |
0.0002 |
- |
- |
- |
- |
- |
3.6224 |
3780 |
0.0 |
- |
- |
- |
- |
- |
3.6320 |
3790 |
0.0 |
- |
- |
- |
- |
- |
3.6416 |
3800 |
0.0 |
- |
- |
- |
- |
- |
3.6512 |
3810 |
0.0 |
- |
- |
- |
- |
- |
3.6608 |
3820 |
0.0 |
- |
- |
- |
- |
- |
3.6703 |
3830 |
0.0 |
- |
- |
- |
- |
- |
3.6799 |
3840 |
0.0001 |
- |
- |
- |
- |
- |
3.6895 |
3850 |
0.0001 |
- |
- |
- |
- |
- |
3.6991 |
3860 |
0.0002 |
- |
- |
- |
- |
- |
3.7087 |
3870 |
0.0 |
- |
- |
- |
- |
- |
3.7183 |
3880 |
0.0001 |
- |
- |
- |
- |
- |
3.7278 |
3890 |
0.0002 |
- |
- |
- |
- |
- |
3.7374 |
3900 |
0.0001 |
- |
- |
- |
- |
- |
3.7470 |
3910 |
0.0003 |
- |
- |
- |
- |
- |
3.7566 |
3920 |
0.0003 |
- |
- |
- |
- |
- |
3.7662 |
3930 |
0.0021 |
- |
- |
- |
- |
- |
3.7758 |
3940 |
0.0002 |
- |
- |
- |
- |
- |
3.7853 |
3950 |
0.0001 |
- |
- |
- |
- |
- |
3.7949 |
3960 |
0.0001 |
- |
- |
- |
- |
- |
3.8045 |
3970 |
0.0001 |
- |
- |
- |
- |
- |
3.8141 |
3980 |
0.0002 |
- |
- |
- |
- |
- |
3.8237 |
3990 |
0.0001 |
- |
- |
- |
- |
- |
3.8333 |
4000 |
0.0001 |
- |
- |
- |
- |
- |
3.8428 |
4010 |
0.0001 |
- |
- |
- |
- |
- |
3.8524 |
4020 |
0.0001 |
- |
- |
- |
- |
- |
3.8620 |
4030 |
0.0 |
- |
- |
- |
- |
- |
3.8716 |
4040 |
0.0003 |
- |
- |
- |
- |
- |
3.8812 |
4050 |
0.0 |
- |
- |
- |
- |
- |
3.8908 |
4060 |
0.002 |
- |
- |
- |
- |
- |
3.9003 |
4070 |
0.0 |
- |
- |
- |
- |
- |
3.9099 |
4080 |
0.0 |
- |
- |
- |
- |
- |
3.9195 |
4090 |
0.0001 |
- |
- |
- |
- |
- |
3.9291 |
4100 |
0.0 |
- |
- |
- |
- |
- |
3.9387 |
4110 |
0.0 |
- |
- |
- |
- |
- |
3.9483 |
4120 |
0.0 |
- |
- |
- |
- |
- |
3.9578 |
4130 |
0.0 |
- |
- |
- |
- |
- |
3.9674 |
4140 |
0.0 |
- |
- |
- |
- |
- |
3.9770 |
4150 |
0.0 |
- |
- |
- |
- |
- |
3.9866 |
4160 |
0.0004 |
- |
- |
- |
- |
- |
3.9962 |
4170 |
0.0 |
- |
- |
- |
- |
- |
3.9981 |
4172 |
- |
0.1592 |
0.1658 |
0.1660 |
0.1580 |
0.1671 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}