File size: 97,491 Bytes
4b93744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
---
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Si dins el termini que s'hagi atorgat amb aquesta finalitat els
habitatges que en disposen no s'han adaptat, la llicència pot ésser revocada.
sentences:
- Qui pot sol·licitar la pròrroga de la prestació?
- Quin és el resultat de la constatació dels fets denunciats per part de l'Ajuntament?
- Què passa si no s'adapten els habitatges d'ús turístic dins el termini establert?
- source_sentence: En cas que a la sepultura hi hagi despulles, la persona titular
podrà triar entre traslladar-les a una altra sepultura de la què en sigui el/la
titular o bé que l'Ajuntament les traslladi a l'ossera general.
sentences:
- Què passa amb les despulles si la persona titular decideix traslladar-les a una
altra sepultura?
- Quins són els beneficis de la llicència de publicitat dinàmica?
- Quan es va aprovar els models d'aval per part de la Junta de Govern Local?
- source_sentence: La colònia felina té un paper important en la reducció del nombre
d'animals abandonats, ja que proporciona un refugi segur i un entorn adequat per
als animals que es troben en situació de risc o abandonament.
sentences:
- Quin és el termini per justificar la realització del projecte/activitat subvencionada?
- Quins són els tractaments mèdics que beneficien la salut de l'empleat municipal?
- Quin és el paper de la colònia felina en la reducció del nombre d'animals abandonats?
- source_sentence: 'La realització de les obres que s’indiquen a continuació està
subjecta a l’obtenció d’una llicència d’obra major atorgada per l’Ajuntament:
... Compartimentació de naus industrials existents...'
sentences:
- Quin tipus d’obra es refereix a la compartimentació de naus industrials existents?
- Quin és el benefici principal del tràmit de canvi de titular de la llicència de
gual?
- Quin és el tipus de garantia que es pot fer mitjançant una assegurança de caució?
- source_sentence: Els membres de la Corporació tenen dret a obtenir dels òrgans de
l'Ajuntament les dades o informacions...
sentences:
- Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels
membres de la Corporació?
- Quin és el motiu principal perquè un beneficiari pugui perdre el dret a una subvenció?
- Quin és el benefici de la presentació de recursos?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.07543103448275862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14439655172413793
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21336206896551724
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3900862068965517
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07543103448275862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.048132183908045974
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04267241379310344
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.039008620689655174
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07543103448275862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14439655172413793
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21336206896551724
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3900862068965517
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19775448839983267
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14087729200875768
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1670966505747688
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.07543103448275862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.1400862068965517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3922413793103448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07543103448275862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.046695402298850566
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04181034482758621
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03922413793103448
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07543103448275862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1400862068965517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3922413793103448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1973388128367381
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14006910235358525
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1660059682423787
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.07112068965517242
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14439655172413793
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3793103448275862
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07112068965517242
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.048132183908045974
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04181034482758621
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03793103448275861
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07112068965517242
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14439655172413793
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3793103448275862
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19451734912520316
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13957307060755345
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1658323397622155
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.06465517241379311
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13793103448275862
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21336206896551724
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3577586206896552
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06465517241379311
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04597701149425287
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04267241379310345
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03577586206896552
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06465517241379311
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13793103448275862
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21336206896551724
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3577586206896552
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18381656342161204
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13181616037219498
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.15919561658705733
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.06896551724137931
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13577586206896552
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20905172413793102
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.35344827586206895
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06896551724137931
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04525862068965517
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.041810344827586214
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03534482758620689
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06896551724137931
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13577586206896552
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20905172413793102
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.35344827586206895
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18256713591724985
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.131704980842912
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1580121500031178
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co./BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co./BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges2608bai-4ep")
# Run inference
sentences = [
"Els membres de la Corporació tenen dret a obtenir dels òrgans de l'Ajuntament les dades o informacions...",
"Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels membres de la Corporació?",
'Quin és el benefici de la presentació de recursos?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0754 |
| cosine_accuracy@3 | 0.1444 |
| cosine_accuracy@5 | 0.2134 |
| cosine_accuracy@10 | 0.3901 |
| cosine_precision@1 | 0.0754 |
| cosine_precision@3 | 0.0481 |
| cosine_precision@5 | 0.0427 |
| cosine_precision@10 | 0.039 |
| cosine_recall@1 | 0.0754 |
| cosine_recall@3 | 0.1444 |
| cosine_recall@5 | 0.2134 |
| cosine_recall@10 | 0.3901 |
| cosine_ndcg@10 | 0.1978 |
| cosine_mrr@10 | 0.1409 |
| **cosine_map@100** | **0.1671** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.0754 |
| cosine_accuracy@3 | 0.1401 |
| cosine_accuracy@5 | 0.2091 |
| cosine_accuracy@10 | 0.3922 |
| cosine_precision@1 | 0.0754 |
| cosine_precision@3 | 0.0467 |
| cosine_precision@5 | 0.0418 |
| cosine_precision@10 | 0.0392 |
| cosine_recall@1 | 0.0754 |
| cosine_recall@3 | 0.1401 |
| cosine_recall@5 | 0.2091 |
| cosine_recall@10 | 0.3922 |
| cosine_ndcg@10 | 0.1973 |
| cosine_mrr@10 | 0.1401 |
| **cosine_map@100** | **0.166** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0711 |
| cosine_accuracy@3 | 0.1444 |
| cosine_accuracy@5 | 0.2091 |
| cosine_accuracy@10 | 0.3793 |
| cosine_precision@1 | 0.0711 |
| cosine_precision@3 | 0.0481 |
| cosine_precision@5 | 0.0418 |
| cosine_precision@10 | 0.0379 |
| cosine_recall@1 | 0.0711 |
| cosine_recall@3 | 0.1444 |
| cosine_recall@5 | 0.2091 |
| cosine_recall@10 | 0.3793 |
| cosine_ndcg@10 | 0.1945 |
| cosine_mrr@10 | 0.1396 |
| **cosine_map@100** | **0.1658** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0647 |
| cosine_accuracy@3 | 0.1379 |
| cosine_accuracy@5 | 0.2134 |
| cosine_accuracy@10 | 0.3578 |
| cosine_precision@1 | 0.0647 |
| cosine_precision@3 | 0.046 |
| cosine_precision@5 | 0.0427 |
| cosine_precision@10 | 0.0358 |
| cosine_recall@1 | 0.0647 |
| cosine_recall@3 | 0.1379 |
| cosine_recall@5 | 0.2134 |
| cosine_recall@10 | 0.3578 |
| cosine_ndcg@10 | 0.1838 |
| cosine_mrr@10 | 0.1318 |
| **cosine_map@100** | **0.1592** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.069 |
| cosine_accuracy@3 | 0.1358 |
| cosine_accuracy@5 | 0.2091 |
| cosine_accuracy@10 | 0.3534 |
| cosine_precision@1 | 0.069 |
| cosine_precision@3 | 0.0453 |
| cosine_precision@5 | 0.0418 |
| cosine_precision@10 | 0.0353 |
| cosine_recall@1 | 0.069 |
| cosine_recall@3 | 0.1358 |
| cosine_recall@5 | 0.2091 |
| cosine_recall@10 | 0.3534 |
| cosine_ndcg@10 | 0.1826 |
| cosine_mrr@10 | 0.1317 |
| **cosine_map@100** | **0.158** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,173 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 48.65 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.96 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| positive | anchor |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
| <code>Quan es produeix la caducitat del dret funerari per haver transcorregut el termini de concessió i un cop que l'Ajuntament hagi resolt el procediment legalment establert per a la declaració de caducitat, és imprescindible formalitzar la nova concessió del dret.</code> | <code>Quan es produeix la caducitat del dret funerari?</code> |
| <code>Les persones beneficiàries de l'ajut per a la creació de noves empreses per persones donades d'alta al règim especial de treballadors autònoms.</code> | <code>Quin és el tipus de persones que poden beneficiar-se de l'ajut?</code> |
| <code>Les entitats beneficiàries són les responsables de la gestió dels recursos econòmics i materials assignats per a la realització del projecte o activitat subvencionat.</code> | <code>Quin és el paper de les entitats beneficiàries en la gestió dels recursos?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0096 | 10 | 0.4269 | - | - | - | - | - |
| 0.0192 | 20 | 0.2328 | - | - | - | - | - |
| 0.0287 | 30 | 0.2803 | - | - | - | - | - |
| 0.0383 | 40 | 0.312 | - | - | - | - | - |
| 0.0479 | 50 | 0.0631 | - | - | - | - | - |
| 0.0575 | 60 | 0.1824 | - | - | - | - | - |
| 0.0671 | 70 | 0.3102 | - | - | - | - | - |
| 0.0767 | 80 | 0.2966 | - | - | - | - | - |
| 0.0862 | 90 | 0.3715 | - | - | - | - | - |
| 0.0958 | 100 | 0.0719 | - | - | - | - | - |
| 0.1054 | 110 | 0.279 | - | - | - | - | - |
| 0.1150 | 120 | 0.0954 | - | - | - | - | - |
| 0.1246 | 130 | 0.4912 | - | - | - | - | - |
| 0.1342 | 140 | 0.2877 | - | - | - | - | - |
| 0.1437 | 150 | 0.1933 | - | - | - | - | - |
| 0.1533 | 160 | 0.5942 | - | - | - | - | - |
| 0.1629 | 170 | 0.1336 | - | - | - | - | - |
| 0.1725 | 180 | 0.1755 | - | - | - | - | - |
| 0.1821 | 190 | 0.1455 | - | - | - | - | - |
| 0.1917 | 200 | 0.4391 | - | - | - | - | - |
| 0.2012 | 210 | 0.0567 | - | - | - | - | - |
| 0.2108 | 220 | 0.2368 | - | - | - | - | - |
| 0.2204 | 230 | 0.0249 | - | - | - | - | - |
| 0.2300 | 240 | 0.0518 | - | - | - | - | - |
| 0.2396 | 250 | 0.015 | - | - | - | - | - |
| 0.2492 | 260 | 0.4096 | - | - | - | - | - |
| 0.2587 | 270 | 0.115 | - | - | - | - | - |
| 0.2683 | 280 | 0.0532 | - | - | - | - | - |
| 0.2779 | 290 | 0.0407 | - | - | - | - | - |
| 0.2875 | 300 | 0.082 | - | - | - | - | - |
| 0.2971 | 310 | 0.1086 | - | - | - | - | - |
| 0.3067 | 320 | 0.0345 | - | - | - | - | - |
| 0.3162 | 330 | 0.3144 | - | - | - | - | - |
| 0.3258 | 340 | 0.0056 | - | - | - | - | - |
| 0.3354 | 350 | 0.0867 | - | - | - | - | - |
| 0.3450 | 360 | 0.1011 | - | - | - | - | - |
| 0.3546 | 370 | 0.6417 | - | - | - | - | - |
| 0.3642 | 380 | 0.0689 | - | - | - | - | - |
| 0.3737 | 390 | 0.0075 | - | - | - | - | - |
| 0.3833 | 400 | 0.0822 | - | - | - | - | - |
| 0.3929 | 410 | 0.098 | - | - | - | - | - |
| 0.4025 | 420 | 0.0442 | - | - | - | - | - |
| 0.4121 | 430 | 0.1759 | - | - | - | - | - |
| 0.4217 | 440 | 0.2625 | - | - | - | - | - |
| 0.4312 | 450 | 0.1123 | - | - | - | - | - |
| 0.4408 | 460 | 0.1174 | - | - | - | - | - |
| 0.4504 | 470 | 0.0529 | - | - | - | - | - |
| 0.4600 | 480 | 0.5396 | - | - | - | - | - |
| 0.4696 | 490 | 0.1985 | - | - | - | - | - |
| 0.4792 | 500 | 0.0016 | - | - | - | - | - |
| 0.4887 | 510 | 0.0496 | - | - | - | - | - |
| 0.4983 | 520 | 0.3138 | - | - | - | - | - |
| 0.5079 | 530 | 0.1974 | - | - | - | - | - |
| 0.5175 | 540 | 0.3489 | - | - | - | - | - |
| 0.5271 | 550 | 0.3332 | - | - | - | - | - |
| 0.5367 | 560 | 0.7838 | - | - | - | - | - |
| 0.5462 | 570 | 0.8335 | - | - | - | - | - |
| 0.5558 | 580 | 0.5018 | - | - | - | - | - |
| 0.5654 | 590 | 0.3391 | - | - | - | - | - |
| 0.5750 | 600 | 0.0055 | - | - | - | - | - |
| 0.5846 | 610 | 0.0264 | - | - | - | - | - |
| 0.5942 | 620 | 0.1397 | - | - | - | - | - |
| 0.6037 | 630 | 0.1114 | - | - | - | - | - |
| 0.6133 | 640 | 0.337 | - | - | - | - | - |
| 0.6229 | 650 | 0.0027 | - | - | - | - | - |
| 0.6325 | 660 | 0.1454 | - | - | - | - | - |
| 0.6421 | 670 | 0.2212 | - | - | - | - | - |
| 0.6517 | 680 | 0.0472 | - | - | - | - | - |
| 0.6612 | 690 | 0.6882 | - | - | - | - | - |
| 0.6708 | 700 | 0.0266 | - | - | - | - | - |
| 0.6804 | 710 | 1.0057 | - | - | - | - | - |
| 0.6900 | 720 | 0.1456 | - | - | - | - | - |
| 0.6996 | 730 | 0.4195 | - | - | - | - | - |
| 0.7092 | 740 | 0.0732 | - | - | - | - | - |
| 0.7187 | 750 | 0.0588 | - | - | - | - | - |
| 0.7283 | 760 | 0.0033 | - | - | - | - | - |
| 0.7379 | 770 | 0.0156 | - | - | - | - | - |
| 0.7475 | 780 | 0.0997 | - | - | - | - | - |
| 0.7571 | 790 | 0.856 | - | - | - | - | - |
| 0.7667 | 800 | 0.2394 | - | - | - | - | - |
| 0.7762 | 810 | 0.0322 | - | - | - | - | - |
| 0.7858 | 820 | 0.1821 | - | - | - | - | - |
| 0.7954 | 830 | 0.1883 | - | - | - | - | - |
| 0.8050 | 840 | 0.0994 | - | - | - | - | - |
| 0.8146 | 850 | 0.3889 | - | - | - | - | - |
| 0.8241 | 860 | 0.0221 | - | - | - | - | - |
| 0.8337 | 870 | 0.0106 | - | - | - | - | - |
| 0.8433 | 880 | 0.0031 | - | - | - | - | - |
| 0.8529 | 890 | 0.1453 | - | - | - | - | - |
| 0.8625 | 900 | 0.487 | - | - | - | - | - |
| 0.8721 | 910 | 0.2987 | - | - | - | - | - |
| 0.8816 | 920 | 0.0347 | - | - | - | - | - |
| 0.8912 | 930 | 0.2024 | - | - | - | - | - |
| 0.9008 | 940 | 0.0087 | - | - | - | - | - |
| 0.9104 | 950 | 0.3944 | - | - | - | - | - |
| 0.9200 | 960 | 0.0935 | - | - | - | - | - |
| 0.9296 | 970 | 0.2408 | - | - | - | - | - |
| 0.9391 | 980 | 0.1545 | - | - | - | - | - |
| 0.9487 | 990 | 0.1168 | - | - | - | - | - |
| 0.9583 | 1000 | 0.0051 | - | - | - | - | - |
| 0.9679 | 1010 | 0.681 | - | - | - | - | - |
| 0.9775 | 1020 | 0.0198 | - | - | - | - | - |
| 0.9871 | 1030 | 0.7243 | - | - | - | - | - |
| 0.9966 | 1040 | 0.0341 | - | - | - | - | - |
| 0.9995 | 1043 | - | 0.1608 | 0.1639 | 0.1678 | 0.1526 | 0.1610 |
| 1.0062 | 1050 | 0.001 | - | - | - | - | - |
| 1.0158 | 1060 | 0.0864 | - | - | - | - | - |
| 1.0254 | 1070 | 0.0209 | - | - | - | - | - |
| 1.0350 | 1080 | 0.2703 | - | - | - | - | - |
| 1.0446 | 1090 | 0.1857 | - | - | - | - | - |
| 1.0541 | 1100 | 0.0032 | - | - | - | - | - |
| 1.0637 | 1110 | 0.118 | - | - | - | - | - |
| 1.0733 | 1120 | 0.0029 | - | - | - | - | - |
| 1.0829 | 1130 | 0.0393 | - | - | - | - | - |
| 1.0925 | 1140 | 0.3103 | - | - | - | - | - |
| 1.1021 | 1150 | 0.0323 | - | - | - | - | - |
| 1.1116 | 1160 | 0.0925 | - | - | - | - | - |
| 1.1212 | 1170 | 0.0963 | - | - | - | - | - |
| 1.1308 | 1180 | 0.0481 | - | - | - | - | - |
| 1.1404 | 1190 | 0.0396 | - | - | - | - | - |
| 1.1500 | 1200 | 0.0033 | - | - | - | - | - |
| 1.1596 | 1210 | 0.1555 | - | - | - | - | - |
| 1.1691 | 1220 | 0.0938 | - | - | - | - | - |
| 1.1787 | 1230 | 0.1347 | - | - | - | - | - |
| 1.1883 | 1240 | 0.3057 | - | - | - | - | - |
| 1.1979 | 1250 | 0.0005 | - | - | - | - | - |
| 1.2075 | 1260 | 0.0634 | - | - | - | - | - |
| 1.2171 | 1270 | 0.0013 | - | - | - | - | - |
| 1.2266 | 1280 | 0.0012 | - | - | - | - | - |
| 1.2362 | 1290 | 0.0119 | - | - | - | - | - |
| 1.2458 | 1300 | 0.002 | - | - | - | - | - |
| 1.2554 | 1310 | 0.016 | - | - | - | - | - |
| 1.2650 | 1320 | 0.0169 | - | - | - | - | - |
| 1.2746 | 1330 | 0.0332 | - | - | - | - | - |
| 1.2841 | 1340 | 0.0076 | - | - | - | - | - |
| 1.2937 | 1350 | 0.0029 | - | - | - | - | - |
| 1.3033 | 1360 | 0.0011 | - | - | - | - | - |
| 1.3129 | 1370 | 0.0477 | - | - | - | - | - |
| 1.3225 | 1380 | 0.014 | - | - | - | - | - |
| 1.3321 | 1390 | 0.0002 | - | - | - | - | - |
| 1.3416 | 1400 | 0.012 | - | - | - | - | - |
| 1.3512 | 1410 | 0.0175 | - | - | - | - | - |
| 1.3608 | 1420 | 0.0088 | - | - | - | - | - |
| 1.3704 | 1430 | 0.0022 | - | - | - | - | - |
| 1.3800 | 1440 | 0.0007 | - | - | - | - | - |
| 1.3896 | 1450 | 0.0098 | - | - | - | - | - |
| 1.3991 | 1460 | 0.0003 | - | - | - | - | - |
| 1.4087 | 1470 | 0.0804 | - | - | - | - | - |
| 1.4183 | 1480 | 0.0055 | - | - | - | - | - |
| 1.4279 | 1490 | 0.1131 | - | - | - | - | - |
| 1.4375 | 1500 | 0.0018 | - | - | - | - | - |
| 1.4471 | 1510 | 0.0002 | - | - | - | - | - |
| 1.4566 | 1520 | 0.0143 | - | - | - | - | - |
| 1.4662 | 1530 | 0.0876 | - | - | - | - | - |
| 1.4758 | 1540 | 0.003 | - | - | - | - | - |
| 1.4854 | 1550 | 0.0087 | - | - | - | - | - |
| 1.4950 | 1560 | 0.0005 | - | - | - | - | - |
| 1.5046 | 1570 | 0.0002 | - | - | - | - | - |
| 1.5141 | 1580 | 0.1614 | - | - | - | - | - |
| 1.5237 | 1590 | 0.0017 | - | - | - | - | - |
| 1.5333 | 1600 | 0.0013 | - | - | - | - | - |
| 1.5429 | 1610 | 0.0041 | - | - | - | - | - |
| 1.5525 | 1620 | 0.0021 | - | - | - | - | - |
| 1.5621 | 1630 | 0.1113 | - | - | - | - | - |
| 1.5716 | 1640 | 0.0003 | - | - | - | - | - |
| 1.5812 | 1650 | 0.0003 | - | - | - | - | - |
| 1.5908 | 1660 | 0.0018 | - | - | - | - | - |
| 1.6004 | 1670 | 0.0004 | - | - | - | - | - |
| 1.6100 | 1680 | 0.0003 | - | - | - | - | - |
| 1.6195 | 1690 | 0.0017 | - | - | - | - | - |
| 1.6291 | 1700 | 0.0023 | - | - | - | - | - |
| 1.6387 | 1710 | 0.0167 | - | - | - | - | - |
| 1.6483 | 1720 | 0.0023 | - | - | - | - | - |
| 1.6579 | 1730 | 0.0095 | - | - | - | - | - |
| 1.6675 | 1740 | 0.0005 | - | - | - | - | - |
| 1.6770 | 1750 | 0.0014 | - | - | - | - | - |
| 1.6866 | 1760 | 0.0007 | - | - | - | - | - |
| 1.6962 | 1770 | 0.0014 | - | - | - | - | - |
| 1.7058 | 1780 | 0.0 | - | - | - | - | - |
| 1.7154 | 1790 | 0.0016 | - | - | - | - | - |
| 1.7250 | 1800 | 0.0004 | - | - | - | - | - |
| 1.7345 | 1810 | 0.0007 | - | - | - | - | - |
| 1.7441 | 1820 | 0.3356 | - | - | - | - | - |
| 1.7537 | 1830 | 0.001 | - | - | - | - | - |
| 1.7633 | 1840 | 0.0436 | - | - | - | - | - |
| 1.7729 | 1850 | 0.0839 | - | - | - | - | - |
| 1.7825 | 1860 | 0.0019 | - | - | - | - | - |
| 1.7920 | 1870 | 0.0406 | - | - | - | - | - |
| 1.8016 | 1880 | 0.0496 | - | - | - | - | - |
| 1.8112 | 1890 | 0.0164 | - | - | - | - | - |
| 1.8208 | 1900 | 0.0118 | - | - | - | - | - |
| 1.8304 | 1910 | 0.001 | - | - | - | - | - |
| 1.8400 | 1920 | 0.0004 | - | - | - | - | - |
| 1.8495 | 1930 | 0.002 | - | - | - | - | - |
| 1.8591 | 1940 | 0.0051 | - | - | - | - | - |
| 1.8687 | 1950 | 0.0624 | - | - | - | - | - |
| 1.8783 | 1960 | 0.0033 | - | - | - | - | - |
| 1.8879 | 1970 | 0.0001 | - | - | - | - | - |
| 1.8975 | 1980 | 0.1594 | - | - | - | - | - |
| 1.9070 | 1990 | 0.007 | - | - | - | - | - |
| 1.9166 | 2000 | 0.0002 | - | - | - | - | - |
| 1.9262 | 2010 | 0.0012 | - | - | - | - | - |
| 1.9358 | 2020 | 0.0011 | - | - | - | - | - |
| 1.9454 | 2030 | 0.0264 | - | - | - | - | - |
| 1.9550 | 2040 | 0.0004 | - | - | - | - | - |
| 1.9645 | 2050 | 0.008 | - | - | - | - | - |
| 1.9741 | 2060 | 0.1025 | - | - | - | - | - |
| 1.9837 | 2070 | 0.0745 | - | - | - | - | - |
| 1.9933 | 2080 | 0.006 | - | - | - | - | - |
| 2.0 | 2087 | - | 0.1609 | 0.1644 | 0.1708 | 0.1499 | 0.1696 |
| 2.0029 | 2090 | 0.001 | - | - | - | - | - |
| 2.0125 | 2100 | 0.0004 | - | - | - | - | - |
| 2.0220 | 2110 | 0.0003 | - | - | - | - | - |
| 2.0316 | 2120 | 0.0001 | - | - | - | - | - |
| 2.0412 | 2130 | 0.0003 | - | - | - | - | - |
| 2.0508 | 2140 | 0.0002 | - | - | - | - | - |
| 2.0604 | 2150 | 0.0006 | - | - | - | - | - |
| 2.0700 | 2160 | 0.04 | - | - | - | - | - |
| 2.0795 | 2170 | 0.0055 | - | - | - | - | - |
| 2.0891 | 2180 | 0.1454 | - | - | - | - | - |
| 2.0987 | 2190 | 0.0029 | - | - | - | - | - |
| 2.1083 | 2200 | 0.0006 | - | - | - | - | - |
| 2.1179 | 2210 | 0.0001 | - | - | - | - | - |
| 2.1275 | 2220 | 0.0129 | - | - | - | - | - |
| 2.1370 | 2230 | 0.0001 | - | - | - | - | - |
| 2.1466 | 2240 | 0.0003 | - | - | - | - | - |
| 2.1562 | 2250 | 0.4145 | - | - | - | - | - |
| 2.1658 | 2260 | 0.0048 | - | - | - | - | - |
| 2.1754 | 2270 | 0.0706 | - | - | - | - | - |
| 2.1850 | 2280 | 0.0026 | - | - | - | - | - |
| 2.1945 | 2290 | 0.008 | - | - | - | - | - |
| 2.2041 | 2300 | 0.0051 | - | - | - | - | - |
| 2.2137 | 2310 | 0.0307 | - | - | - | - | - |
| 2.2233 | 2320 | 0.0017 | - | - | - | - | - |
| 2.2329 | 2330 | 0.0005 | - | - | - | - | - |
| 2.2425 | 2340 | 0.0001 | - | - | - | - | - |
| 2.2520 | 2350 | 0.0001 | - | - | - | - | - |
| 2.2616 | 2360 | 0.0001 | - | - | - | - | - |
| 2.2712 | 2370 | 0.0461 | - | - | - | - | - |
| 2.2808 | 2380 | 0.0001 | - | - | - | - | - |
| 2.2904 | 2390 | 0.0003 | - | - | - | - | - |
| 2.3000 | 2400 | 0.001 | - | - | - | - | - |
| 2.3095 | 2410 | 0.0002 | - | - | - | - | - |
| 2.3191 | 2420 | 0.1568 | - | - | - | - | - |
| 2.3287 | 2430 | 0.0001 | - | - | - | - | - |
| 2.3383 | 2440 | 0.0005 | - | - | - | - | - |
| 2.3479 | 2450 | 0.0072 | - | - | - | - | - |
| 2.3575 | 2460 | 0.014 | - | - | - | - | - |
| 2.3670 | 2470 | 0.0003 | - | - | - | - | - |
| 2.3766 | 2480 | 0.0 | - | - | - | - | - |
| 2.3862 | 2490 | 0.0001 | - | - | - | - | - |
| 2.3958 | 2500 | 0.0008 | - | - | - | - | - |
| 2.4054 | 2510 | 0.0 | - | - | - | - | - |
| 2.4149 | 2520 | 0.0002 | - | - | - | - | - |
| 2.4245 | 2530 | 0.061 | - | - | - | - | - |
| 2.4341 | 2540 | 0.0005 | - | - | - | - | - |
| 2.4437 | 2550 | 0.0 | - | - | - | - | - |
| 2.4533 | 2560 | 0.0003 | - | - | - | - | - |
| 2.4629 | 2570 | 0.0095 | - | - | - | - | - |
| 2.4724 | 2580 | 0.0002 | - | - | - | - | - |
| 2.4820 | 2590 | 0.0 | - | - | - | - | - |
| 2.4916 | 2600 | 0.0003 | - | - | - | - | - |
| 2.5012 | 2610 | 0.0002 | - | - | - | - | - |
| 2.5108 | 2620 | 0.0035 | - | - | - | - | - |
| 2.5204 | 2630 | 0.0001 | - | - | - | - | - |
| 2.5299 | 2640 | 0.0 | - | - | - | - | - |
| 2.5395 | 2650 | 0.0017 | - | - | - | - | - |
| 2.5491 | 2660 | 0.0 | - | - | - | - | - |
| 2.5587 | 2670 | 0.0066 | - | - | - | - | - |
| 2.5683 | 2680 | 0.0004 | - | - | - | - | - |
| 2.5779 | 2690 | 0.0001 | - | - | - | - | - |
| 2.5874 | 2700 | 0.0 | - | - | - | - | - |
| 2.5970 | 2710 | 0.0 | - | - | - | - | - |
| 2.6066 | 2720 | 0.131 | - | - | - | - | - |
| 2.6162 | 2730 | 0.0001 | - | - | - | - | - |
| 2.6258 | 2740 | 0.0001 | - | - | - | - | - |
| 2.6354 | 2750 | 0.0001 | - | - | - | - | - |
| 2.6449 | 2760 | 0.0 | - | - | - | - | - |
| 2.6545 | 2770 | 0.0003 | - | - | - | - | - |
| 2.6641 | 2780 | 0.0095 | - | - | - | - | - |
| 2.6737 | 2790 | 0.0 | - | - | - | - | - |
| 2.6833 | 2800 | 0.0003 | - | - | - | - | - |
| 2.6929 | 2810 | 0.0001 | - | - | - | - | - |
| 2.7024 | 2820 | 0.0002 | - | - | - | - | - |
| 2.7120 | 2830 | 0.0007 | - | - | - | - | - |
| 2.7216 | 2840 | 0.0008 | - | - | - | - | - |
| 2.7312 | 2850 | 0.0 | - | - | - | - | - |
| 2.7408 | 2860 | 0.0002 | - | - | - | - | - |
| 2.7504 | 2870 | 0.0003 | - | - | - | - | - |
| 2.7599 | 2880 | 0.0062 | - | - | - | - | - |
| 2.7695 | 2890 | 0.0415 | - | - | - | - | - |
| 2.7791 | 2900 | 0.0002 | - | - | - | - | - |
| 2.7887 | 2910 | 0.0024 | - | - | - | - | - |
| 2.7983 | 2920 | 0.0022 | - | - | - | - | - |
| 2.8079 | 2930 | 0.0014 | - | - | - | - | - |
| 2.8174 | 2940 | 0.1301 | - | - | - | - | - |
| 2.8270 | 2950 | 0.0 | - | - | - | - | - |
| 2.8366 | 2960 | 0.0 | - | - | - | - | - |
| 2.8462 | 2970 | 0.0 | - | - | - | - | - |
| 2.8558 | 2980 | 0.0006 | - | - | - | - | - |
| 2.8654 | 2990 | 0.0 | - | - | - | - | - |
| 2.8749 | 3000 | 0.0235 | - | - | - | - | - |
| 2.8845 | 3010 | 0.0001 | - | - | - | - | - |
| 2.8941 | 3020 | 0.0285 | - | - | - | - | - |
| 2.9037 | 3030 | 0.0 | - | - | - | - | - |
| 2.9133 | 3040 | 0.0002 | - | - | - | - | - |
| 2.9229 | 3050 | 0.0 | - | - | - | - | - |
| 2.9324 | 3060 | 0.0005 | - | - | - | - | - |
| 2.9420 | 3070 | 0.0001 | - | - | - | - | - |
| 2.9516 | 3080 | 0.0011 | - | - | - | - | - |
| 2.9612 | 3090 | 0.0 | - | - | - | - | - |
| 2.9708 | 3100 | 0.0001 | - | - | - | - | - |
| 2.9804 | 3110 | 0.0046 | - | - | - | - | - |
| 2.9899 | 3120 | 0.0001 | - | - | - | - | - |
| **2.9995** | **3130** | **0.0005** | **0.1622** | **0.1647** | **0.1635** | **0.1564** | **0.1617** |
| 3.0091 | 3140 | 0.0 | - | - | - | - | - |
| 3.0187 | 3150 | 0.0 | - | - | - | - | - |
| 3.0283 | 3160 | 0.0 | - | - | - | - | - |
| 3.0379 | 3170 | 0.0002 | - | - | - | - | - |
| 3.0474 | 3180 | 0.0004 | - | - | - | - | - |
| 3.0570 | 3190 | 0.1022 | - | - | - | - | - |
| 3.0666 | 3200 | 0.0012 | - | - | - | - | - |
| 3.0762 | 3210 | 0.0001 | - | - | - | - | - |
| 3.0858 | 3220 | 0.0677 | - | - | - | - | - |
| 3.0954 | 3230 | 0.0 | - | - | - | - | - |
| 3.1049 | 3240 | 0.0002 | - | - | - | - | - |
| 3.1145 | 3250 | 0.0001 | - | - | - | - | - |
| 3.1241 | 3260 | 0.0005 | - | - | - | - | - |
| 3.1337 | 3270 | 0.0002 | - | - | - | - | - |
| 3.1433 | 3280 | 0.0 | - | - | - | - | - |
| 3.1529 | 3290 | 0.0021 | - | - | - | - | - |
| 3.1624 | 3300 | 0.0001 | - | - | - | - | - |
| 3.1720 | 3310 | 0.0077 | - | - | - | - | - |
| 3.1816 | 3320 | 0.0001 | - | - | - | - | - |
| 3.1912 | 3330 | 0.1324 | - | - | - | - | - |
| 3.2008 | 3340 | 0.0 | - | - | - | - | - |
| 3.2103 | 3350 | 0.1278 | - | - | - | - | - |
| 3.2199 | 3360 | 0.0001 | - | - | - | - | - |
| 3.2295 | 3370 | 0.0 | - | - | - | - | - |
| 3.2391 | 3380 | 0.0001 | - | - | - | - | - |
| 3.2487 | 3390 | 0.0001 | - | - | - | - | - |
| 3.2583 | 3400 | 0.0 | - | - | - | - | - |
| 3.2678 | 3410 | 0.0001 | - | - | - | - | - |
| 3.2774 | 3420 | 0.0 | - | - | - | - | - |
| 3.2870 | 3430 | 0.0001 | - | - | - | - | - |
| 3.2966 | 3440 | 0.0001 | - | - | - | - | - |
| 3.3062 | 3450 | 0.0001 | - | - | - | - | - |
| 3.3158 | 3460 | 0.0263 | - | - | - | - | - |
| 3.3253 | 3470 | 0.0001 | - | - | - | - | - |
| 3.3349 | 3480 | 0.0002 | - | - | - | - | - |
| 3.3445 | 3490 | 0.0003 | - | - | - | - | - |
| 3.3541 | 3500 | 0.0 | - | - | - | - | - |
| 3.3637 | 3510 | 0.0 | - | - | - | - | - |
| 3.3733 | 3520 | 0.0 | - | - | - | - | - |
| 3.3828 | 3530 | 0.0002 | - | - | - | - | - |
| 3.3924 | 3540 | 0.0001 | - | - | - | - | - |
| 3.4020 | 3550 | 0.0 | - | - | - | - | - |
| 3.4116 | 3560 | 0.0001 | - | - | - | - | - |
| 3.4212 | 3570 | 0.0001 | - | - | - | - | - |
| 3.4308 | 3580 | 0.0122 | - | - | - | - | - |
| 3.4403 | 3590 | 0.0 | - | - | - | - | - |
| 3.4499 | 3600 | 0.0001 | - | - | - | - | - |
| 3.4595 | 3610 | 0.0003 | - | - | - | - | - |
| 3.4691 | 3620 | 0.0 | - | - | - | - | - |
| 3.4787 | 3630 | 0.0 | - | - | - | - | - |
| 3.4883 | 3640 | 0.0001 | - | - | - | - | - |
| 3.4978 | 3650 | 0.0 | - | - | - | - | - |
| 3.5074 | 3660 | 0.0002 | - | - | - | - | - |
| 3.5170 | 3670 | 0.0004 | - | - | - | - | - |
| 3.5266 | 3680 | 0.0003 | - | - | - | - | - |
| 3.5362 | 3690 | 0.0004 | - | - | - | - | - |
| 3.5458 | 3700 | 0.0 | - | - | - | - | - |
| 3.5553 | 3710 | 0.0001 | - | - | - | - | - |
| 3.5649 | 3720 | 0.0001 | - | - | - | - | - |
| 3.5745 | 3730 | 0.0 | - | - | - | - | - |
| 3.5841 | 3740 | 0.0001 | - | - | - | - | - |
| 3.5937 | 3750 | 0.0003 | - | - | - | - | - |
| 3.6033 | 3760 | 0.0 | - | - | - | - | - |
| 3.6128 | 3770 | 0.0002 | - | - | - | - | - |
| 3.6224 | 3780 | 0.0 | - | - | - | - | - |
| 3.6320 | 3790 | 0.0 | - | - | - | - | - |
| 3.6416 | 3800 | 0.0 | - | - | - | - | - |
| 3.6512 | 3810 | 0.0 | - | - | - | - | - |
| 3.6608 | 3820 | 0.0 | - | - | - | - | - |
| 3.6703 | 3830 | 0.0 | - | - | - | - | - |
| 3.6799 | 3840 | 0.0001 | - | - | - | - | - |
| 3.6895 | 3850 | 0.0001 | - | - | - | - | - |
| 3.6991 | 3860 | 0.0002 | - | - | - | - | - |
| 3.7087 | 3870 | 0.0 | - | - | - | - | - |
| 3.7183 | 3880 | 0.0001 | - | - | - | - | - |
| 3.7278 | 3890 | 0.0002 | - | - | - | - | - |
| 3.7374 | 3900 | 0.0001 | - | - | - | - | - |
| 3.7470 | 3910 | 0.0003 | - | - | - | - | - |
| 3.7566 | 3920 | 0.0003 | - | - | - | - | - |
| 3.7662 | 3930 | 0.0021 | - | - | - | - | - |
| 3.7758 | 3940 | 0.0002 | - | - | - | - | - |
| 3.7853 | 3950 | 0.0001 | - | - | - | - | - |
| 3.7949 | 3960 | 0.0001 | - | - | - | - | - |
| 3.8045 | 3970 | 0.0001 | - | - | - | - | - |
| 3.8141 | 3980 | 0.0002 | - | - | - | - | - |
| 3.8237 | 3990 | 0.0001 | - | - | - | - | - |
| 3.8333 | 4000 | 0.0001 | - | - | - | - | - |
| 3.8428 | 4010 | 0.0001 | - | - | - | - | - |
| 3.8524 | 4020 | 0.0001 | - | - | - | - | - |
| 3.8620 | 4030 | 0.0 | - | - | - | - | - |
| 3.8716 | 4040 | 0.0003 | - | - | - | - | - |
| 3.8812 | 4050 | 0.0 | - | - | - | - | - |
| 3.8908 | 4060 | 0.002 | - | - | - | - | - |
| 3.9003 | 4070 | 0.0 | - | - | - | - | - |
| 3.9099 | 4080 | 0.0 | - | - | - | - | - |
| 3.9195 | 4090 | 0.0001 | - | - | - | - | - |
| 3.9291 | 4100 | 0.0 | - | - | - | - | - |
| 3.9387 | 4110 | 0.0 | - | - | - | - | - |
| 3.9483 | 4120 | 0.0 | - | - | - | - | - |
| 3.9578 | 4130 | 0.0 | - | - | - | - | - |
| 3.9674 | 4140 | 0.0 | - | - | - | - | - |
| 3.9770 | 4150 | 0.0 | - | - | - | - | - |
| 3.9866 | 4160 | 0.0004 | - | - | - | - | - |
| 3.9962 | 4170 | 0.0 | - | - | - | - | - |
| 3.9981 | 4172 | - | 0.1592 | 0.1658 | 0.1660 | 0.1580 | 0.1671 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |