adriansanz
commited on
Commit
•
4b93744
1
Parent(s):
4d9e730
Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1216 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-m3
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy@1
|
8 |
+
- cosine_accuracy@3
|
9 |
+
- cosine_accuracy@5
|
10 |
+
- cosine_accuracy@10
|
11 |
+
- cosine_precision@1
|
12 |
+
- cosine_precision@3
|
13 |
+
- cosine_precision@5
|
14 |
+
- cosine_precision@10
|
15 |
+
- cosine_recall@1
|
16 |
+
- cosine_recall@3
|
17 |
+
- cosine_recall@5
|
18 |
+
- cosine_recall@10
|
19 |
+
- cosine_ndcg@10
|
20 |
+
- cosine_mrr@10
|
21 |
+
- cosine_map@100
|
22 |
+
pipeline_tag: sentence-similarity
|
23 |
+
tags:
|
24 |
+
- sentence-transformers
|
25 |
+
- sentence-similarity
|
26 |
+
- feature-extraction
|
27 |
+
- generated_from_trainer
|
28 |
+
- dataset_size:4173
|
29 |
+
- loss:MatryoshkaLoss
|
30 |
+
- loss:MultipleNegativesRankingLoss
|
31 |
+
widget:
|
32 |
+
- source_sentence: Si dins el termini que s'hagi atorgat amb aquesta finalitat els
|
33 |
+
habitatges que en disposen no s'han adaptat, la llicència pot ésser revocada.
|
34 |
+
sentences:
|
35 |
+
- Qui pot sol·licitar la pròrroga de la prestació?
|
36 |
+
- Quin és el resultat de la constatació dels fets denunciats per part de l'Ajuntament?
|
37 |
+
- Què passa si no s'adapten els habitatges d'ús turístic dins el termini establert?
|
38 |
+
- source_sentence: En cas que a la sepultura hi hagi despulles, la persona titular
|
39 |
+
podrà triar entre traslladar-les a una altra sepultura de la què en sigui el/la
|
40 |
+
titular o bé que l'Ajuntament les traslladi a l'ossera general.
|
41 |
+
sentences:
|
42 |
+
- Què passa amb les despulles si la persona titular decideix traslladar-les a una
|
43 |
+
altra sepultura?
|
44 |
+
- Quins són els beneficis de la llicència de publicitat dinàmica?
|
45 |
+
- Quan es va aprovar els models d'aval per part de la Junta de Govern Local?
|
46 |
+
- source_sentence: La colònia felina té un paper important en la reducció del nombre
|
47 |
+
d'animals abandonats, ja que proporciona un refugi segur i un entorn adequat per
|
48 |
+
als animals que es troben en situació de risc o abandonament.
|
49 |
+
sentences:
|
50 |
+
- Quin és el termini per justificar la realització del projecte/activitat subvencionada?
|
51 |
+
- Quins són els tractaments mèdics que beneficien la salut de l'empleat municipal?
|
52 |
+
- Quin és el paper de la colònia felina en la reducció del nombre d'animals abandonats?
|
53 |
+
- source_sentence: 'La realització de les obres que s’indiquen a continuació està
|
54 |
+
subjecta a l’obtenció d’una llicència d’obra major atorgada per l’Ajuntament:
|
55 |
+
... Compartimentació de naus industrials existents...'
|
56 |
+
sentences:
|
57 |
+
- Quin tipus d’obra es refereix a la compartimentació de naus industrials existents?
|
58 |
+
- Quin és el benefici principal del tràmit de canvi de titular de la llicència de
|
59 |
+
gual?
|
60 |
+
- Quin és el tipus de garantia que es pot fer mitjançant una assegurança de caució?
|
61 |
+
- source_sentence: Els membres de la Corporació tenen dret a obtenir dels òrgans de
|
62 |
+
l'Ajuntament les dades o informacions...
|
63 |
+
sentences:
|
64 |
+
- Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels
|
65 |
+
membres de la Corporació?
|
66 |
+
- Quin és el motiu principal perquè un beneficiari pugui perdre el dret a una subvenció?
|
67 |
+
- Quin és el benefici de la presentació de recursos?
|
68 |
+
model-index:
|
69 |
+
- name: SentenceTransformer based on BAAI/bge-m3
|
70 |
+
results:
|
71 |
+
- task:
|
72 |
+
type: information-retrieval
|
73 |
+
name: Information Retrieval
|
74 |
+
dataset:
|
75 |
+
name: dim 768
|
76 |
+
type: dim_768
|
77 |
+
metrics:
|
78 |
+
- type: cosine_accuracy@1
|
79 |
+
value: 0.07543103448275862
|
80 |
+
name: Cosine Accuracy@1
|
81 |
+
- type: cosine_accuracy@3
|
82 |
+
value: 0.14439655172413793
|
83 |
+
name: Cosine Accuracy@3
|
84 |
+
- type: cosine_accuracy@5
|
85 |
+
value: 0.21336206896551724
|
86 |
+
name: Cosine Accuracy@5
|
87 |
+
- type: cosine_accuracy@10
|
88 |
+
value: 0.3900862068965517
|
89 |
+
name: Cosine Accuracy@10
|
90 |
+
- type: cosine_precision@1
|
91 |
+
value: 0.07543103448275862
|
92 |
+
name: Cosine Precision@1
|
93 |
+
- type: cosine_precision@3
|
94 |
+
value: 0.048132183908045974
|
95 |
+
name: Cosine Precision@3
|
96 |
+
- type: cosine_precision@5
|
97 |
+
value: 0.04267241379310344
|
98 |
+
name: Cosine Precision@5
|
99 |
+
- type: cosine_precision@10
|
100 |
+
value: 0.039008620689655174
|
101 |
+
name: Cosine Precision@10
|
102 |
+
- type: cosine_recall@1
|
103 |
+
value: 0.07543103448275862
|
104 |
+
name: Cosine Recall@1
|
105 |
+
- type: cosine_recall@3
|
106 |
+
value: 0.14439655172413793
|
107 |
+
name: Cosine Recall@3
|
108 |
+
- type: cosine_recall@5
|
109 |
+
value: 0.21336206896551724
|
110 |
+
name: Cosine Recall@5
|
111 |
+
- type: cosine_recall@10
|
112 |
+
value: 0.3900862068965517
|
113 |
+
name: Cosine Recall@10
|
114 |
+
- type: cosine_ndcg@10
|
115 |
+
value: 0.19775448839983267
|
116 |
+
name: Cosine Ndcg@10
|
117 |
+
- type: cosine_mrr@10
|
118 |
+
value: 0.14087729200875768
|
119 |
+
name: Cosine Mrr@10
|
120 |
+
- type: cosine_map@100
|
121 |
+
value: 0.1670966505747688
|
122 |
+
name: Cosine Map@100
|
123 |
+
- task:
|
124 |
+
type: information-retrieval
|
125 |
+
name: Information Retrieval
|
126 |
+
dataset:
|
127 |
+
name: dim 512
|
128 |
+
type: dim_512
|
129 |
+
metrics:
|
130 |
+
- type: cosine_accuracy@1
|
131 |
+
value: 0.07543103448275862
|
132 |
+
name: Cosine Accuracy@1
|
133 |
+
- type: cosine_accuracy@3
|
134 |
+
value: 0.1400862068965517
|
135 |
+
name: Cosine Accuracy@3
|
136 |
+
- type: cosine_accuracy@5
|
137 |
+
value: 0.20905172413793102
|
138 |
+
name: Cosine Accuracy@5
|
139 |
+
- type: cosine_accuracy@10
|
140 |
+
value: 0.3922413793103448
|
141 |
+
name: Cosine Accuracy@10
|
142 |
+
- type: cosine_precision@1
|
143 |
+
value: 0.07543103448275862
|
144 |
+
name: Cosine Precision@1
|
145 |
+
- type: cosine_precision@3
|
146 |
+
value: 0.046695402298850566
|
147 |
+
name: Cosine Precision@3
|
148 |
+
- type: cosine_precision@5
|
149 |
+
value: 0.04181034482758621
|
150 |
+
name: Cosine Precision@5
|
151 |
+
- type: cosine_precision@10
|
152 |
+
value: 0.03922413793103448
|
153 |
+
name: Cosine Precision@10
|
154 |
+
- type: cosine_recall@1
|
155 |
+
value: 0.07543103448275862
|
156 |
+
name: Cosine Recall@1
|
157 |
+
- type: cosine_recall@3
|
158 |
+
value: 0.1400862068965517
|
159 |
+
name: Cosine Recall@3
|
160 |
+
- type: cosine_recall@5
|
161 |
+
value: 0.20905172413793102
|
162 |
+
name: Cosine Recall@5
|
163 |
+
- type: cosine_recall@10
|
164 |
+
value: 0.3922413793103448
|
165 |
+
name: Cosine Recall@10
|
166 |
+
- type: cosine_ndcg@10
|
167 |
+
value: 0.1973388128367381
|
168 |
+
name: Cosine Ndcg@10
|
169 |
+
- type: cosine_mrr@10
|
170 |
+
value: 0.14006910235358525
|
171 |
+
name: Cosine Mrr@10
|
172 |
+
- type: cosine_map@100
|
173 |
+
value: 0.1660059682423787
|
174 |
+
name: Cosine Map@100
|
175 |
+
- task:
|
176 |
+
type: information-retrieval
|
177 |
+
name: Information Retrieval
|
178 |
+
dataset:
|
179 |
+
name: dim 256
|
180 |
+
type: dim_256
|
181 |
+
metrics:
|
182 |
+
- type: cosine_accuracy@1
|
183 |
+
value: 0.07112068965517242
|
184 |
+
name: Cosine Accuracy@1
|
185 |
+
- type: cosine_accuracy@3
|
186 |
+
value: 0.14439655172413793
|
187 |
+
name: Cosine Accuracy@3
|
188 |
+
- type: cosine_accuracy@5
|
189 |
+
value: 0.20905172413793102
|
190 |
+
name: Cosine Accuracy@5
|
191 |
+
- type: cosine_accuracy@10
|
192 |
+
value: 0.3793103448275862
|
193 |
+
name: Cosine Accuracy@10
|
194 |
+
- type: cosine_precision@1
|
195 |
+
value: 0.07112068965517242
|
196 |
+
name: Cosine Precision@1
|
197 |
+
- type: cosine_precision@3
|
198 |
+
value: 0.048132183908045974
|
199 |
+
name: Cosine Precision@3
|
200 |
+
- type: cosine_precision@5
|
201 |
+
value: 0.04181034482758621
|
202 |
+
name: Cosine Precision@5
|
203 |
+
- type: cosine_precision@10
|
204 |
+
value: 0.03793103448275861
|
205 |
+
name: Cosine Precision@10
|
206 |
+
- type: cosine_recall@1
|
207 |
+
value: 0.07112068965517242
|
208 |
+
name: Cosine Recall@1
|
209 |
+
- type: cosine_recall@3
|
210 |
+
value: 0.14439655172413793
|
211 |
+
name: Cosine Recall@3
|
212 |
+
- type: cosine_recall@5
|
213 |
+
value: 0.20905172413793102
|
214 |
+
name: Cosine Recall@5
|
215 |
+
- type: cosine_recall@10
|
216 |
+
value: 0.3793103448275862
|
217 |
+
name: Cosine Recall@10
|
218 |
+
- type: cosine_ndcg@10
|
219 |
+
value: 0.19451734912520316
|
220 |
+
name: Cosine Ndcg@10
|
221 |
+
- type: cosine_mrr@10
|
222 |
+
value: 0.13957307060755345
|
223 |
+
name: Cosine Mrr@10
|
224 |
+
- type: cosine_map@100
|
225 |
+
value: 0.1658323397622155
|
226 |
+
name: Cosine Map@100
|
227 |
+
- task:
|
228 |
+
type: information-retrieval
|
229 |
+
name: Information Retrieval
|
230 |
+
dataset:
|
231 |
+
name: dim 128
|
232 |
+
type: dim_128
|
233 |
+
metrics:
|
234 |
+
- type: cosine_accuracy@1
|
235 |
+
value: 0.06465517241379311
|
236 |
+
name: Cosine Accuracy@1
|
237 |
+
- type: cosine_accuracy@3
|
238 |
+
value: 0.13793103448275862
|
239 |
+
name: Cosine Accuracy@3
|
240 |
+
- type: cosine_accuracy@5
|
241 |
+
value: 0.21336206896551724
|
242 |
+
name: Cosine Accuracy@5
|
243 |
+
- type: cosine_accuracy@10
|
244 |
+
value: 0.3577586206896552
|
245 |
+
name: Cosine Accuracy@10
|
246 |
+
- type: cosine_precision@1
|
247 |
+
value: 0.06465517241379311
|
248 |
+
name: Cosine Precision@1
|
249 |
+
- type: cosine_precision@3
|
250 |
+
value: 0.04597701149425287
|
251 |
+
name: Cosine Precision@3
|
252 |
+
- type: cosine_precision@5
|
253 |
+
value: 0.04267241379310345
|
254 |
+
name: Cosine Precision@5
|
255 |
+
- type: cosine_precision@10
|
256 |
+
value: 0.03577586206896552
|
257 |
+
name: Cosine Precision@10
|
258 |
+
- type: cosine_recall@1
|
259 |
+
value: 0.06465517241379311
|
260 |
+
name: Cosine Recall@1
|
261 |
+
- type: cosine_recall@3
|
262 |
+
value: 0.13793103448275862
|
263 |
+
name: Cosine Recall@3
|
264 |
+
- type: cosine_recall@5
|
265 |
+
value: 0.21336206896551724
|
266 |
+
name: Cosine Recall@5
|
267 |
+
- type: cosine_recall@10
|
268 |
+
value: 0.3577586206896552
|
269 |
+
name: Cosine Recall@10
|
270 |
+
- type: cosine_ndcg@10
|
271 |
+
value: 0.18381656342161204
|
272 |
+
name: Cosine Ndcg@10
|
273 |
+
- type: cosine_mrr@10
|
274 |
+
value: 0.13181616037219498
|
275 |
+
name: Cosine Mrr@10
|
276 |
+
- type: cosine_map@100
|
277 |
+
value: 0.15919561658705733
|
278 |
+
name: Cosine Map@100
|
279 |
+
- task:
|
280 |
+
type: information-retrieval
|
281 |
+
name: Information Retrieval
|
282 |
+
dataset:
|
283 |
+
name: dim 64
|
284 |
+
type: dim_64
|
285 |
+
metrics:
|
286 |
+
- type: cosine_accuracy@1
|
287 |
+
value: 0.06896551724137931
|
288 |
+
name: Cosine Accuracy@1
|
289 |
+
- type: cosine_accuracy@3
|
290 |
+
value: 0.13577586206896552
|
291 |
+
name: Cosine Accuracy@3
|
292 |
+
- type: cosine_accuracy@5
|
293 |
+
value: 0.20905172413793102
|
294 |
+
name: Cosine Accuracy@5
|
295 |
+
- type: cosine_accuracy@10
|
296 |
+
value: 0.35344827586206895
|
297 |
+
name: Cosine Accuracy@10
|
298 |
+
- type: cosine_precision@1
|
299 |
+
value: 0.06896551724137931
|
300 |
+
name: Cosine Precision@1
|
301 |
+
- type: cosine_precision@3
|
302 |
+
value: 0.04525862068965517
|
303 |
+
name: Cosine Precision@3
|
304 |
+
- type: cosine_precision@5
|
305 |
+
value: 0.041810344827586214
|
306 |
+
name: Cosine Precision@5
|
307 |
+
- type: cosine_precision@10
|
308 |
+
value: 0.03534482758620689
|
309 |
+
name: Cosine Precision@10
|
310 |
+
- type: cosine_recall@1
|
311 |
+
value: 0.06896551724137931
|
312 |
+
name: Cosine Recall@1
|
313 |
+
- type: cosine_recall@3
|
314 |
+
value: 0.13577586206896552
|
315 |
+
name: Cosine Recall@3
|
316 |
+
- type: cosine_recall@5
|
317 |
+
value: 0.20905172413793102
|
318 |
+
name: Cosine Recall@5
|
319 |
+
- type: cosine_recall@10
|
320 |
+
value: 0.35344827586206895
|
321 |
+
name: Cosine Recall@10
|
322 |
+
- type: cosine_ndcg@10
|
323 |
+
value: 0.18256713591724985
|
324 |
+
name: Cosine Ndcg@10
|
325 |
+
- type: cosine_mrr@10
|
326 |
+
value: 0.131704980842912
|
327 |
+
name: Cosine Mrr@10
|
328 |
+
- type: cosine_map@100
|
329 |
+
value: 0.1580121500031178
|
330 |
+
name: Cosine Map@100
|
331 |
+
---
|
332 |
+
|
333 |
+
# SentenceTransformer based on BAAI/bge-m3
|
334 |
+
|
335 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
336 |
+
|
337 |
+
## Model Details
|
338 |
+
|
339 |
+
### Model Description
|
340 |
+
- **Model Type:** Sentence Transformer
|
341 |
+
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
|
342 |
+
- **Maximum Sequence Length:** 8192 tokens
|
343 |
+
- **Output Dimensionality:** 1024 tokens
|
344 |
+
- **Similarity Function:** Cosine Similarity
|
345 |
+
<!-- - **Training Dataset:** Unknown -->
|
346 |
+
<!-- - **Language:** Unknown -->
|
347 |
+
<!-- - **License:** Unknown -->
|
348 |
+
|
349 |
+
### Model Sources
|
350 |
+
|
351 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
352 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
353 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
354 |
+
|
355 |
+
### Full Model Architecture
|
356 |
+
|
357 |
+
```
|
358 |
+
SentenceTransformer(
|
359 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
360 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
361 |
+
(2): Normalize()
|
362 |
+
)
|
363 |
+
```
|
364 |
+
|
365 |
+
## Usage
|
366 |
+
|
367 |
+
### Direct Usage (Sentence Transformers)
|
368 |
+
|
369 |
+
First install the Sentence Transformers library:
|
370 |
+
|
371 |
+
```bash
|
372 |
+
pip install -U sentence-transformers
|
373 |
+
```
|
374 |
+
|
375 |
+
Then you can load this model and run inference.
|
376 |
+
```python
|
377 |
+
from sentence_transformers import SentenceTransformer
|
378 |
+
|
379 |
+
# Download from the 🤗 Hub
|
380 |
+
model = SentenceTransformer("adriansanz/sitges2608bai-4ep")
|
381 |
+
# Run inference
|
382 |
+
sentences = [
|
383 |
+
"Els membres de la Corporació tenen dret a obtenir dels òrgans de l'Ajuntament les dades o informacions...",
|
384 |
+
"Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels membres de la Corporació?",
|
385 |
+
'Quin és el benefici de la presentació de recursos?',
|
386 |
+
]
|
387 |
+
embeddings = model.encode(sentences)
|
388 |
+
print(embeddings.shape)
|
389 |
+
# [3, 1024]
|
390 |
+
|
391 |
+
# Get the similarity scores for the embeddings
|
392 |
+
similarities = model.similarity(embeddings, embeddings)
|
393 |
+
print(similarities.shape)
|
394 |
+
# [3, 3]
|
395 |
+
```
|
396 |
+
|
397 |
+
<!--
|
398 |
+
### Direct Usage (Transformers)
|
399 |
+
|
400 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
401 |
+
|
402 |
+
</details>
|
403 |
+
-->
|
404 |
+
|
405 |
+
<!--
|
406 |
+
### Downstream Usage (Sentence Transformers)
|
407 |
+
|
408 |
+
You can finetune this model on your own dataset.
|
409 |
+
|
410 |
+
<details><summary>Click to expand</summary>
|
411 |
+
|
412 |
+
</details>
|
413 |
+
-->
|
414 |
+
|
415 |
+
<!--
|
416 |
+
### Out-of-Scope Use
|
417 |
+
|
418 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
419 |
+
-->
|
420 |
+
|
421 |
+
## Evaluation
|
422 |
+
|
423 |
+
### Metrics
|
424 |
+
|
425 |
+
#### Information Retrieval
|
426 |
+
* Dataset: `dim_768`
|
427 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
428 |
+
|
429 |
+
| Metric | Value |
|
430 |
+
|:--------------------|:-----------|
|
431 |
+
| cosine_accuracy@1 | 0.0754 |
|
432 |
+
| cosine_accuracy@3 | 0.1444 |
|
433 |
+
| cosine_accuracy@5 | 0.2134 |
|
434 |
+
| cosine_accuracy@10 | 0.3901 |
|
435 |
+
| cosine_precision@1 | 0.0754 |
|
436 |
+
| cosine_precision@3 | 0.0481 |
|
437 |
+
| cosine_precision@5 | 0.0427 |
|
438 |
+
| cosine_precision@10 | 0.039 |
|
439 |
+
| cosine_recall@1 | 0.0754 |
|
440 |
+
| cosine_recall@3 | 0.1444 |
|
441 |
+
| cosine_recall@5 | 0.2134 |
|
442 |
+
| cosine_recall@10 | 0.3901 |
|
443 |
+
| cosine_ndcg@10 | 0.1978 |
|
444 |
+
| cosine_mrr@10 | 0.1409 |
|
445 |
+
| **cosine_map@100** | **0.1671** |
|
446 |
+
|
447 |
+
#### Information Retrieval
|
448 |
+
* Dataset: `dim_512`
|
449 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
450 |
+
|
451 |
+
| Metric | Value |
|
452 |
+
|:--------------------|:----------|
|
453 |
+
| cosine_accuracy@1 | 0.0754 |
|
454 |
+
| cosine_accuracy@3 | 0.1401 |
|
455 |
+
| cosine_accuracy@5 | 0.2091 |
|
456 |
+
| cosine_accuracy@10 | 0.3922 |
|
457 |
+
| cosine_precision@1 | 0.0754 |
|
458 |
+
| cosine_precision@3 | 0.0467 |
|
459 |
+
| cosine_precision@5 | 0.0418 |
|
460 |
+
| cosine_precision@10 | 0.0392 |
|
461 |
+
| cosine_recall@1 | 0.0754 |
|
462 |
+
| cosine_recall@3 | 0.1401 |
|
463 |
+
| cosine_recall@5 | 0.2091 |
|
464 |
+
| cosine_recall@10 | 0.3922 |
|
465 |
+
| cosine_ndcg@10 | 0.1973 |
|
466 |
+
| cosine_mrr@10 | 0.1401 |
|
467 |
+
| **cosine_map@100** | **0.166** |
|
468 |
+
|
469 |
+
#### Information Retrieval
|
470 |
+
* Dataset: `dim_256`
|
471 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
472 |
+
|
473 |
+
| Metric | Value |
|
474 |
+
|:--------------------|:-----------|
|
475 |
+
| cosine_accuracy@1 | 0.0711 |
|
476 |
+
| cosine_accuracy@3 | 0.1444 |
|
477 |
+
| cosine_accuracy@5 | 0.2091 |
|
478 |
+
| cosine_accuracy@10 | 0.3793 |
|
479 |
+
| cosine_precision@1 | 0.0711 |
|
480 |
+
| cosine_precision@3 | 0.0481 |
|
481 |
+
| cosine_precision@5 | 0.0418 |
|
482 |
+
| cosine_precision@10 | 0.0379 |
|
483 |
+
| cosine_recall@1 | 0.0711 |
|
484 |
+
| cosine_recall@3 | 0.1444 |
|
485 |
+
| cosine_recall@5 | 0.2091 |
|
486 |
+
| cosine_recall@10 | 0.3793 |
|
487 |
+
| cosine_ndcg@10 | 0.1945 |
|
488 |
+
| cosine_mrr@10 | 0.1396 |
|
489 |
+
| **cosine_map@100** | **0.1658** |
|
490 |
+
|
491 |
+
#### Information Retrieval
|
492 |
+
* Dataset: `dim_128`
|
493 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
494 |
+
|
495 |
+
| Metric | Value |
|
496 |
+
|:--------------------|:-----------|
|
497 |
+
| cosine_accuracy@1 | 0.0647 |
|
498 |
+
| cosine_accuracy@3 | 0.1379 |
|
499 |
+
| cosine_accuracy@5 | 0.2134 |
|
500 |
+
| cosine_accuracy@10 | 0.3578 |
|
501 |
+
| cosine_precision@1 | 0.0647 |
|
502 |
+
| cosine_precision@3 | 0.046 |
|
503 |
+
| cosine_precision@5 | 0.0427 |
|
504 |
+
| cosine_precision@10 | 0.0358 |
|
505 |
+
| cosine_recall@1 | 0.0647 |
|
506 |
+
| cosine_recall@3 | 0.1379 |
|
507 |
+
| cosine_recall@5 | 0.2134 |
|
508 |
+
| cosine_recall@10 | 0.3578 |
|
509 |
+
| cosine_ndcg@10 | 0.1838 |
|
510 |
+
| cosine_mrr@10 | 0.1318 |
|
511 |
+
| **cosine_map@100** | **0.1592** |
|
512 |
+
|
513 |
+
#### Information Retrieval
|
514 |
+
* Dataset: `dim_64`
|
515 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
516 |
+
|
517 |
+
| Metric | Value |
|
518 |
+
|:--------------------|:----------|
|
519 |
+
| cosine_accuracy@1 | 0.069 |
|
520 |
+
| cosine_accuracy@3 | 0.1358 |
|
521 |
+
| cosine_accuracy@5 | 0.2091 |
|
522 |
+
| cosine_accuracy@10 | 0.3534 |
|
523 |
+
| cosine_precision@1 | 0.069 |
|
524 |
+
| cosine_precision@3 | 0.0453 |
|
525 |
+
| cosine_precision@5 | 0.0418 |
|
526 |
+
| cosine_precision@10 | 0.0353 |
|
527 |
+
| cosine_recall@1 | 0.069 |
|
528 |
+
| cosine_recall@3 | 0.1358 |
|
529 |
+
| cosine_recall@5 | 0.2091 |
|
530 |
+
| cosine_recall@10 | 0.3534 |
|
531 |
+
| cosine_ndcg@10 | 0.1826 |
|
532 |
+
| cosine_mrr@10 | 0.1317 |
|
533 |
+
| **cosine_map@100** | **0.158** |
|
534 |
+
|
535 |
+
<!--
|
536 |
+
## Bias, Risks and Limitations
|
537 |
+
|
538 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
539 |
+
-->
|
540 |
+
|
541 |
+
<!--
|
542 |
+
### Recommendations
|
543 |
+
|
544 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
545 |
+
-->
|
546 |
+
|
547 |
+
## Training Details
|
548 |
+
|
549 |
+
### Training Dataset
|
550 |
+
|
551 |
+
#### Unnamed Dataset
|
552 |
+
|
553 |
+
|
554 |
+
* Size: 4,173 training samples
|
555 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
556 |
+
* Approximate statistics based on the first 1000 samples:
|
557 |
+
| | positive | anchor |
|
558 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
559 |
+
| type | string | string |
|
560 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 48.65 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.96 tokens</li><li>max: 45 tokens</li></ul> |
|
561 |
+
* Samples:
|
562 |
+
| positive | anchor |
|
563 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
|
564 |
+
| <code>Quan es produeix la caducitat del dret funerari per haver transcorregut el termini de concessió i un cop que l'Ajuntament hagi resolt el procediment legalment establert per a la declaració de caducitat, és imprescindible formalitzar la nova concessió del dret.</code> | <code>Quan es produeix la caducitat del dret funerari?</code> |
|
565 |
+
| <code>Les persones beneficiàries de l'ajut per a la creació de noves empreses per persones donades d'alta al règim especial de treballadors autònoms.</code> | <code>Quin és el tipus de persones que poden beneficiar-se de l'ajut?</code> |
|
566 |
+
| <code>Les entitats beneficiàries són les responsables de la gestió dels recursos econòmics i materials assignats per a la realització del projecte o activitat subvencionat.</code> | <code>Quin és el paper de les entitats beneficiàries en la gestió dels recursos?</code> |
|
567 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
568 |
+
```json
|
569 |
+
{
|
570 |
+
"loss": "MultipleNegativesRankingLoss",
|
571 |
+
"matryoshka_dims": [
|
572 |
+
768,
|
573 |
+
512,
|
574 |
+
256,
|
575 |
+
128,
|
576 |
+
64
|
577 |
+
],
|
578 |
+
"matryoshka_weights": [
|
579 |
+
1,
|
580 |
+
1,
|
581 |
+
1,
|
582 |
+
1,
|
583 |
+
1
|
584 |
+
],
|
585 |
+
"n_dims_per_step": -1
|
586 |
+
}
|
587 |
+
```
|
588 |
+
|
589 |
+
### Training Hyperparameters
|
590 |
+
#### Non-Default Hyperparameters
|
591 |
+
|
592 |
+
- `eval_strategy`: epoch
|
593 |
+
- `per_device_train_batch_size`: 2
|
594 |
+
- `per_device_eval_batch_size`: 2
|
595 |
+
- `gradient_accumulation_steps`: 2
|
596 |
+
- `learning_rate`: 2e-05
|
597 |
+
- `num_train_epochs`: 4
|
598 |
+
- `lr_scheduler_type`: cosine
|
599 |
+
- `warmup_ratio`: 0.1
|
600 |
+
- `bf16`: True
|
601 |
+
- `tf32`: False
|
602 |
+
- `load_best_model_at_end`: True
|
603 |
+
- `optim`: adamw_torch_fused
|
604 |
+
- `batch_sampler`: no_duplicates
|
605 |
+
|
606 |
+
#### All Hyperparameters
|
607 |
+
<details><summary>Click to expand</summary>
|
608 |
+
|
609 |
+
- `overwrite_output_dir`: False
|
610 |
+
- `do_predict`: False
|
611 |
+
- `eval_strategy`: epoch
|
612 |
+
- `prediction_loss_only`: True
|
613 |
+
- `per_device_train_batch_size`: 2
|
614 |
+
- `per_device_eval_batch_size`: 2
|
615 |
+
- `per_gpu_train_batch_size`: None
|
616 |
+
- `per_gpu_eval_batch_size`: None
|
617 |
+
- `gradient_accumulation_steps`: 2
|
618 |
+
- `eval_accumulation_steps`: None
|
619 |
+
- `learning_rate`: 2e-05
|
620 |
+
- `weight_decay`: 0.0
|
621 |
+
- `adam_beta1`: 0.9
|
622 |
+
- `adam_beta2`: 0.999
|
623 |
+
- `adam_epsilon`: 1e-08
|
624 |
+
- `max_grad_norm`: 1.0
|
625 |
+
- `num_train_epochs`: 4
|
626 |
+
- `max_steps`: -1
|
627 |
+
- `lr_scheduler_type`: cosine
|
628 |
+
- `lr_scheduler_kwargs`: {}
|
629 |
+
- `warmup_ratio`: 0.1
|
630 |
+
- `warmup_steps`: 0
|
631 |
+
- `log_level`: passive
|
632 |
+
- `log_level_replica`: warning
|
633 |
+
- `log_on_each_node`: True
|
634 |
+
- `logging_nan_inf_filter`: True
|
635 |
+
- `save_safetensors`: True
|
636 |
+
- `save_on_each_node`: False
|
637 |
+
- `save_only_model`: False
|
638 |
+
- `restore_callback_states_from_checkpoint`: False
|
639 |
+
- `no_cuda`: False
|
640 |
+
- `use_cpu`: False
|
641 |
+
- `use_mps_device`: False
|
642 |
+
- `seed`: 42
|
643 |
+
- `data_seed`: None
|
644 |
+
- `jit_mode_eval`: False
|
645 |
+
- `use_ipex`: False
|
646 |
+
- `bf16`: True
|
647 |
+
- `fp16`: False
|
648 |
+
- `fp16_opt_level`: O1
|
649 |
+
- `half_precision_backend`: auto
|
650 |
+
- `bf16_full_eval`: False
|
651 |
+
- `fp16_full_eval`: False
|
652 |
+
- `tf32`: False
|
653 |
+
- `local_rank`: 0
|
654 |
+
- `ddp_backend`: None
|
655 |
+
- `tpu_num_cores`: None
|
656 |
+
- `tpu_metrics_debug`: False
|
657 |
+
- `debug`: []
|
658 |
+
- `dataloader_drop_last`: False
|
659 |
+
- `dataloader_num_workers`: 0
|
660 |
+
- `dataloader_prefetch_factor`: None
|
661 |
+
- `past_index`: -1
|
662 |
+
- `disable_tqdm`: False
|
663 |
+
- `remove_unused_columns`: True
|
664 |
+
- `label_names`: None
|
665 |
+
- `load_best_model_at_end`: True
|
666 |
+
- `ignore_data_skip`: False
|
667 |
+
- `fsdp`: []
|
668 |
+
- `fsdp_min_num_params`: 0
|
669 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
670 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
671 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
672 |
+
- `deepspeed`: None
|
673 |
+
- `label_smoothing_factor`: 0.0
|
674 |
+
- `optim`: adamw_torch_fused
|
675 |
+
- `optim_args`: None
|
676 |
+
- `adafactor`: False
|
677 |
+
- `group_by_length`: False
|
678 |
+
- `length_column_name`: length
|
679 |
+
- `ddp_find_unused_parameters`: None
|
680 |
+
- `ddp_bucket_cap_mb`: None
|
681 |
+
- `ddp_broadcast_buffers`: False
|
682 |
+
- `dataloader_pin_memory`: True
|
683 |
+
- `dataloader_persistent_workers`: False
|
684 |
+
- `skip_memory_metrics`: True
|
685 |
+
- `use_legacy_prediction_loop`: False
|
686 |
+
- `push_to_hub`: False
|
687 |
+
- `resume_from_checkpoint`: None
|
688 |
+
- `hub_model_id`: None
|
689 |
+
- `hub_strategy`: every_save
|
690 |
+
- `hub_private_repo`: False
|
691 |
+
- `hub_always_push`: False
|
692 |
+
- `gradient_checkpointing`: False
|
693 |
+
- `gradient_checkpointing_kwargs`: None
|
694 |
+
- `include_inputs_for_metrics`: False
|
695 |
+
- `eval_do_concat_batches`: True
|
696 |
+
- `fp16_backend`: auto
|
697 |
+
- `push_to_hub_model_id`: None
|
698 |
+
- `push_to_hub_organization`: None
|
699 |
+
- `mp_parameters`:
|
700 |
+
- `auto_find_batch_size`: False
|
701 |
+
- `full_determinism`: False
|
702 |
+
- `torchdynamo`: None
|
703 |
+
- `ray_scope`: last
|
704 |
+
- `ddp_timeout`: 1800
|
705 |
+
- `torch_compile`: False
|
706 |
+
- `torch_compile_backend`: None
|
707 |
+
- `torch_compile_mode`: None
|
708 |
+
- `dispatch_batches`: None
|
709 |
+
- `split_batches`: None
|
710 |
+
- `include_tokens_per_second`: False
|
711 |
+
- `include_num_input_tokens_seen`: False
|
712 |
+
- `neftune_noise_alpha`: None
|
713 |
+
- `optim_target_modules`: None
|
714 |
+
- `batch_eval_metrics`: False
|
715 |
+
- `eval_on_start`: False
|
716 |
+
- `batch_sampler`: no_duplicates
|
717 |
+
- `multi_dataset_batch_sampler`: proportional
|
718 |
+
|
719 |
+
</details>
|
720 |
+
|
721 |
+
### Training Logs
|
722 |
+
<details><summary>Click to expand</summary>
|
723 |
+
|
724 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
725 |
+
|:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
726 |
+
| 0.0096 | 10 | 0.4269 | - | - | - | - | - |
|
727 |
+
| 0.0192 | 20 | 0.2328 | - | - | - | - | - |
|
728 |
+
| 0.0287 | 30 | 0.2803 | - | - | - | - | - |
|
729 |
+
| 0.0383 | 40 | 0.312 | - | - | - | - | - |
|
730 |
+
| 0.0479 | 50 | 0.0631 | - | - | - | - | - |
|
731 |
+
| 0.0575 | 60 | 0.1824 | - | - | - | - | - |
|
732 |
+
| 0.0671 | 70 | 0.3102 | - | - | - | - | - |
|
733 |
+
| 0.0767 | 80 | 0.2966 | - | - | - | - | - |
|
734 |
+
| 0.0862 | 90 | 0.3715 | - | - | - | - | - |
|
735 |
+
| 0.0958 | 100 | 0.0719 | - | - | - | - | - |
|
736 |
+
| 0.1054 | 110 | 0.279 | - | - | - | - | - |
|
737 |
+
| 0.1150 | 120 | 0.0954 | - | - | - | - | - |
|
738 |
+
| 0.1246 | 130 | 0.4912 | - | - | - | - | - |
|
739 |
+
| 0.1342 | 140 | 0.2877 | - | - | - | - | - |
|
740 |
+
| 0.1437 | 150 | 0.1933 | - | - | - | - | - |
|
741 |
+
| 0.1533 | 160 | 0.5942 | - | - | - | - | - |
|
742 |
+
| 0.1629 | 170 | 0.1336 | - | - | - | - | - |
|
743 |
+
| 0.1725 | 180 | 0.1755 | - | - | - | - | - |
|
744 |
+
| 0.1821 | 190 | 0.1455 | - | - | - | - | - |
|
745 |
+
| 0.1917 | 200 | 0.4391 | - | - | - | - | - |
|
746 |
+
| 0.2012 | 210 | 0.0567 | - | - | - | - | - |
|
747 |
+
| 0.2108 | 220 | 0.2368 | - | - | - | - | - |
|
748 |
+
| 0.2204 | 230 | 0.0249 | - | - | - | - | - |
|
749 |
+
| 0.2300 | 240 | 0.0518 | - | - | - | - | - |
|
750 |
+
| 0.2396 | 250 | 0.015 | - | - | - | - | - |
|
751 |
+
| 0.2492 | 260 | 0.4096 | - | - | - | - | - |
|
752 |
+
| 0.2587 | 270 | 0.115 | - | - | - | - | - |
|
753 |
+
| 0.2683 | 280 | 0.0532 | - | - | - | - | - |
|
754 |
+
| 0.2779 | 290 | 0.0407 | - | - | - | - | - |
|
755 |
+
| 0.2875 | 300 | 0.082 | - | - | - | - | - |
|
756 |
+
| 0.2971 | 310 | 0.1086 | - | - | - | - | - |
|
757 |
+
| 0.3067 | 320 | 0.0345 | - | - | - | - | - |
|
758 |
+
| 0.3162 | 330 | 0.3144 | - | - | - | - | - |
|
759 |
+
| 0.3258 | 340 | 0.0056 | - | - | - | - | - |
|
760 |
+
| 0.3354 | 350 | 0.0867 | - | - | - | - | - |
|
761 |
+
| 0.3450 | 360 | 0.1011 | - | - | - | - | - |
|
762 |
+
| 0.3546 | 370 | 0.6417 | - | - | - | - | - |
|
763 |
+
| 0.3642 | 380 | 0.0689 | - | - | - | - | - |
|
764 |
+
| 0.3737 | 390 | 0.0075 | - | - | - | - | - |
|
765 |
+
| 0.3833 | 400 | 0.0822 | - | - | - | - | - |
|
766 |
+
| 0.3929 | 410 | 0.098 | - | - | - | - | - |
|
767 |
+
| 0.4025 | 420 | 0.0442 | - | - | - | - | - |
|
768 |
+
| 0.4121 | 430 | 0.1759 | - | - | - | - | - |
|
769 |
+
| 0.4217 | 440 | 0.2625 | - | - | - | - | - |
|
770 |
+
| 0.4312 | 450 | 0.1123 | - | - | - | - | - |
|
771 |
+
| 0.4408 | 460 | 0.1174 | - | - | - | - | - |
|
772 |
+
| 0.4504 | 470 | 0.0529 | - | - | - | - | - |
|
773 |
+
| 0.4600 | 480 | 0.5396 | - | - | - | - | - |
|
774 |
+
| 0.4696 | 490 | 0.1985 | - | - | - | - | - |
|
775 |
+
| 0.4792 | 500 | 0.0016 | - | - | - | - | - |
|
776 |
+
| 0.4887 | 510 | 0.0496 | - | - | - | - | - |
|
777 |
+
| 0.4983 | 520 | 0.3138 | - | - | - | - | - |
|
778 |
+
| 0.5079 | 530 | 0.1974 | - | - | - | - | - |
|
779 |
+
| 0.5175 | 540 | 0.3489 | - | - | - | - | - |
|
780 |
+
| 0.5271 | 550 | 0.3332 | - | - | - | - | - |
|
781 |
+
| 0.5367 | 560 | 0.7838 | - | - | - | - | - |
|
782 |
+
| 0.5462 | 570 | 0.8335 | - | - | - | - | - |
|
783 |
+
| 0.5558 | 580 | 0.5018 | - | - | - | - | - |
|
784 |
+
| 0.5654 | 590 | 0.3391 | - | - | - | - | - |
|
785 |
+
| 0.5750 | 600 | 0.0055 | - | - | - | - | - |
|
786 |
+
| 0.5846 | 610 | 0.0264 | - | - | - | - | - |
|
787 |
+
| 0.5942 | 620 | 0.1397 | - | - | - | - | - |
|
788 |
+
| 0.6037 | 630 | 0.1114 | - | - | - | - | - |
|
789 |
+
| 0.6133 | 640 | 0.337 | - | - | - | - | - |
|
790 |
+
| 0.6229 | 650 | 0.0027 | - | - | - | - | - |
|
791 |
+
| 0.6325 | 660 | 0.1454 | - | - | - | - | - |
|
792 |
+
| 0.6421 | 670 | 0.2212 | - | - | - | - | - |
|
793 |
+
| 0.6517 | 680 | 0.0472 | - | - | - | - | - |
|
794 |
+
| 0.6612 | 690 | 0.6882 | - | - | - | - | - |
|
795 |
+
| 0.6708 | 700 | 0.0266 | - | - | - | - | - |
|
796 |
+
| 0.6804 | 710 | 1.0057 | - | - | - | - | - |
|
797 |
+
| 0.6900 | 720 | 0.1456 | - | - | - | - | - |
|
798 |
+
| 0.6996 | 730 | 0.4195 | - | - | - | - | - |
|
799 |
+
| 0.7092 | 740 | 0.0732 | - | - | - | - | - |
|
800 |
+
| 0.7187 | 750 | 0.0588 | - | - | - | - | - |
|
801 |
+
| 0.7283 | 760 | 0.0033 | - | - | - | - | - |
|
802 |
+
| 0.7379 | 770 | 0.0156 | - | - | - | - | - |
|
803 |
+
| 0.7475 | 780 | 0.0997 | - | - | - | - | - |
|
804 |
+
| 0.7571 | 790 | 0.856 | - | - | - | - | - |
|
805 |
+
| 0.7667 | 800 | 0.2394 | - | - | - | - | - |
|
806 |
+
| 0.7762 | 810 | 0.0322 | - | - | - | - | - |
|
807 |
+
| 0.7858 | 820 | 0.1821 | - | - | - | - | - |
|
808 |
+
| 0.7954 | 830 | 0.1883 | - | - | - | - | - |
|
809 |
+
| 0.8050 | 840 | 0.0994 | - | - | - | - | - |
|
810 |
+
| 0.8146 | 850 | 0.3889 | - | - | - | - | - |
|
811 |
+
| 0.8241 | 860 | 0.0221 | - | - | - | - | - |
|
812 |
+
| 0.8337 | 870 | 0.0106 | - | - | - | - | - |
|
813 |
+
| 0.8433 | 880 | 0.0031 | - | - | - | - | - |
|
814 |
+
| 0.8529 | 890 | 0.1453 | - | - | - | - | - |
|
815 |
+
| 0.8625 | 900 | 0.487 | - | - | - | - | - |
|
816 |
+
| 0.8721 | 910 | 0.2987 | - | - | - | - | - |
|
817 |
+
| 0.8816 | 920 | 0.0347 | - | - | - | - | - |
|
818 |
+
| 0.8912 | 930 | 0.2024 | - | - | - | - | - |
|
819 |
+
| 0.9008 | 940 | 0.0087 | - | - | - | - | - |
|
820 |
+
| 0.9104 | 950 | 0.3944 | - | - | - | - | - |
|
821 |
+
| 0.9200 | 960 | 0.0935 | - | - | - | - | - |
|
822 |
+
| 0.9296 | 970 | 0.2408 | - | - | - | - | - |
|
823 |
+
| 0.9391 | 980 | 0.1545 | - | - | - | - | - |
|
824 |
+
| 0.9487 | 990 | 0.1168 | - | - | - | - | - |
|
825 |
+
| 0.9583 | 1000 | 0.0051 | - | - | - | - | - |
|
826 |
+
| 0.9679 | 1010 | 0.681 | - | - | - | - | - |
|
827 |
+
| 0.9775 | 1020 | 0.0198 | - | - | - | - | - |
|
828 |
+
| 0.9871 | 1030 | 0.7243 | - | - | - | - | - |
|
829 |
+
| 0.9966 | 1040 | 0.0341 | - | - | - | - | - |
|
830 |
+
| 0.9995 | 1043 | - | 0.1608 | 0.1639 | 0.1678 | 0.1526 | 0.1610 |
|
831 |
+
| 1.0062 | 1050 | 0.001 | - | - | - | - | - |
|
832 |
+
| 1.0158 | 1060 | 0.0864 | - | - | - | - | - |
|
833 |
+
| 1.0254 | 1070 | 0.0209 | - | - | - | - | - |
|
834 |
+
| 1.0350 | 1080 | 0.2703 | - | - | - | - | - |
|
835 |
+
| 1.0446 | 1090 | 0.1857 | - | - | - | - | - |
|
836 |
+
| 1.0541 | 1100 | 0.0032 | - | - | - | - | - |
|
837 |
+
| 1.0637 | 1110 | 0.118 | - | - | - | - | - |
|
838 |
+
| 1.0733 | 1120 | 0.0029 | - | - | - | - | - |
|
839 |
+
| 1.0829 | 1130 | 0.0393 | - | - | - | - | - |
|
840 |
+
| 1.0925 | 1140 | 0.3103 | - | - | - | - | - |
|
841 |
+
| 1.1021 | 1150 | 0.0323 | - | - | - | - | - |
|
842 |
+
| 1.1116 | 1160 | 0.0925 | - | - | - | - | - |
|
843 |
+
| 1.1212 | 1170 | 0.0963 | - | - | - | - | - |
|
844 |
+
| 1.1308 | 1180 | 0.0481 | - | - | - | - | - |
|
845 |
+
| 1.1404 | 1190 | 0.0396 | - | - | - | - | - |
|
846 |
+
| 1.1500 | 1200 | 0.0033 | - | - | - | - | - |
|
847 |
+
| 1.1596 | 1210 | 0.1555 | - | - | - | - | - |
|
848 |
+
| 1.1691 | 1220 | 0.0938 | - | - | - | - | - |
|
849 |
+
| 1.1787 | 1230 | 0.1347 | - | - | - | - | - |
|
850 |
+
| 1.1883 | 1240 | 0.3057 | - | - | - | - | - |
|
851 |
+
| 1.1979 | 1250 | 0.0005 | - | - | - | - | - |
|
852 |
+
| 1.2075 | 1260 | 0.0634 | - | - | - | - | - |
|
853 |
+
| 1.2171 | 1270 | 0.0013 | - | - | - | - | - |
|
854 |
+
| 1.2266 | 1280 | 0.0012 | - | - | - | - | - |
|
855 |
+
| 1.2362 | 1290 | 0.0119 | - | - | - | - | - |
|
856 |
+
| 1.2458 | 1300 | 0.002 | - | - | - | - | - |
|
857 |
+
| 1.2554 | 1310 | 0.016 | - | - | - | - | - |
|
858 |
+
| 1.2650 | 1320 | 0.0169 | - | - | - | - | - |
|
859 |
+
| 1.2746 | 1330 | 0.0332 | - | - | - | - | - |
|
860 |
+
| 1.2841 | 1340 | 0.0076 | - | - | - | - | - |
|
861 |
+
| 1.2937 | 1350 | 0.0029 | - | - | - | - | - |
|
862 |
+
| 1.3033 | 1360 | 0.0011 | - | - | - | - | - |
|
863 |
+
| 1.3129 | 1370 | 0.0477 | - | - | - | - | - |
|
864 |
+
| 1.3225 | 1380 | 0.014 | - | - | - | - | - |
|
865 |
+
| 1.3321 | 1390 | 0.0002 | - | - | - | - | - |
|
866 |
+
| 1.3416 | 1400 | 0.012 | - | - | - | - | - |
|
867 |
+
| 1.3512 | 1410 | 0.0175 | - | - | - | - | - |
|
868 |
+
| 1.3608 | 1420 | 0.0088 | - | - | - | - | - |
|
869 |
+
| 1.3704 | 1430 | 0.0022 | - | - | - | - | - |
|
870 |
+
| 1.3800 | 1440 | 0.0007 | - | - | - | - | - |
|
871 |
+
| 1.3896 | 1450 | 0.0098 | - | - | - | - | - |
|
872 |
+
| 1.3991 | 1460 | 0.0003 | - | - | - | - | - |
|
873 |
+
| 1.4087 | 1470 | 0.0804 | - | - | - | - | - |
|
874 |
+
| 1.4183 | 1480 | 0.0055 | - | - | - | - | - |
|
875 |
+
| 1.4279 | 1490 | 0.1131 | - | - | - | - | - |
|
876 |
+
| 1.4375 | 1500 | 0.0018 | - | - | - | - | - |
|
877 |
+
| 1.4471 | 1510 | 0.0002 | - | - | - | - | - |
|
878 |
+
| 1.4566 | 1520 | 0.0143 | - | - | - | - | - |
|
879 |
+
| 1.4662 | 1530 | 0.0876 | - | - | - | - | - |
|
880 |
+
| 1.4758 | 1540 | 0.003 | - | - | - | - | - |
|
881 |
+
| 1.4854 | 1550 | 0.0087 | - | - | - | - | - |
|
882 |
+
| 1.4950 | 1560 | 0.0005 | - | - | - | - | - |
|
883 |
+
| 1.5046 | 1570 | 0.0002 | - | - | - | - | - |
|
884 |
+
| 1.5141 | 1580 | 0.1614 | - | - | - | - | - |
|
885 |
+
| 1.5237 | 1590 | 0.0017 | - | - | - | - | - |
|
886 |
+
| 1.5333 | 1600 | 0.0013 | - | - | - | - | - |
|
887 |
+
| 1.5429 | 1610 | 0.0041 | - | - | - | - | - |
|
888 |
+
| 1.5525 | 1620 | 0.0021 | - | - | - | - | - |
|
889 |
+
| 1.5621 | 1630 | 0.1113 | - | - | - | - | - |
|
890 |
+
| 1.5716 | 1640 | 0.0003 | - | - | - | - | - |
|
891 |
+
| 1.5812 | 1650 | 0.0003 | - | - | - | - | - |
|
892 |
+
| 1.5908 | 1660 | 0.0018 | - | - | - | - | - |
|
893 |
+
| 1.6004 | 1670 | 0.0004 | - | - | - | - | - |
|
894 |
+
| 1.6100 | 1680 | 0.0003 | - | - | - | - | - |
|
895 |
+
| 1.6195 | 1690 | 0.0017 | - | - | - | - | - |
|
896 |
+
| 1.6291 | 1700 | 0.0023 | - | - | - | - | - |
|
897 |
+
| 1.6387 | 1710 | 0.0167 | - | - | - | - | - |
|
898 |
+
| 1.6483 | 1720 | 0.0023 | - | - | - | - | - |
|
899 |
+
| 1.6579 | 1730 | 0.0095 | - | - | - | - | - |
|
900 |
+
| 1.6675 | 1740 | 0.0005 | - | - | - | - | - |
|
901 |
+
| 1.6770 | 1750 | 0.0014 | - | - | - | - | - |
|
902 |
+
| 1.6866 | 1760 | 0.0007 | - | - | - | - | - |
|
903 |
+
| 1.6962 | 1770 | 0.0014 | - | - | - | - | - |
|
904 |
+
| 1.7058 | 1780 | 0.0 | - | - | - | - | - |
|
905 |
+
| 1.7154 | 1790 | 0.0016 | - | - | - | - | - |
|
906 |
+
| 1.7250 | 1800 | 0.0004 | - | - | - | - | - |
|
907 |
+
| 1.7345 | 1810 | 0.0007 | - | - | - | - | - |
|
908 |
+
| 1.7441 | 1820 | 0.3356 | - | - | - | - | - |
|
909 |
+
| 1.7537 | 1830 | 0.001 | - | - | - | - | - |
|
910 |
+
| 1.7633 | 1840 | 0.0436 | - | - | - | - | - |
|
911 |
+
| 1.7729 | 1850 | 0.0839 | - | - | - | - | - |
|
912 |
+
| 1.7825 | 1860 | 0.0019 | - | - | - | - | - |
|
913 |
+
| 1.7920 | 1870 | 0.0406 | - | - | - | - | - |
|
914 |
+
| 1.8016 | 1880 | 0.0496 | - | - | - | - | - |
|
915 |
+
| 1.8112 | 1890 | 0.0164 | - | - | - | - | - |
|
916 |
+
| 1.8208 | 1900 | 0.0118 | - | - | - | - | - |
|
917 |
+
| 1.8304 | 1910 | 0.001 | - | - | - | - | - |
|
918 |
+
| 1.8400 | 1920 | 0.0004 | - | - | - | - | - |
|
919 |
+
| 1.8495 | 1930 | 0.002 | - | - | - | - | - |
|
920 |
+
| 1.8591 | 1940 | 0.0051 | - | - | - | - | - |
|
921 |
+
| 1.8687 | 1950 | 0.0624 | - | - | - | - | - |
|
922 |
+
| 1.8783 | 1960 | 0.0033 | - | - | - | - | - |
|
923 |
+
| 1.8879 | 1970 | 0.0001 | - | - | - | - | - |
|
924 |
+
| 1.8975 | 1980 | 0.1594 | - | - | - | - | - |
|
925 |
+
| 1.9070 | 1990 | 0.007 | - | - | - | - | - |
|
926 |
+
| 1.9166 | 2000 | 0.0002 | - | - | - | - | - |
|
927 |
+
| 1.9262 | 2010 | 0.0012 | - | - | - | - | - |
|
928 |
+
| 1.9358 | 2020 | 0.0011 | - | - | - | - | - |
|
929 |
+
| 1.9454 | 2030 | 0.0264 | - | - | - | - | - |
|
930 |
+
| 1.9550 | 2040 | 0.0004 | - | - | - | - | - |
|
931 |
+
| 1.9645 | 2050 | 0.008 | - | - | - | - | - |
|
932 |
+
| 1.9741 | 2060 | 0.1025 | - | - | - | - | - |
|
933 |
+
| 1.9837 | 2070 | 0.0745 | - | - | - | - | - |
|
934 |
+
| 1.9933 | 2080 | 0.006 | - | - | - | - | - |
|
935 |
+
| 2.0 | 2087 | - | 0.1609 | 0.1644 | 0.1708 | 0.1499 | 0.1696 |
|
936 |
+
| 2.0029 | 2090 | 0.001 | - | - | - | - | - |
|
937 |
+
| 2.0125 | 2100 | 0.0004 | - | - | - | - | - |
|
938 |
+
| 2.0220 | 2110 | 0.0003 | - | - | - | - | - |
|
939 |
+
| 2.0316 | 2120 | 0.0001 | - | - | - | - | - |
|
940 |
+
| 2.0412 | 2130 | 0.0003 | - | - | - | - | - |
|
941 |
+
| 2.0508 | 2140 | 0.0002 | - | - | - | - | - |
|
942 |
+
| 2.0604 | 2150 | 0.0006 | - | - | - | - | - |
|
943 |
+
| 2.0700 | 2160 | 0.04 | - | - | - | - | - |
|
944 |
+
| 2.0795 | 2170 | 0.0055 | - | - | - | - | - |
|
945 |
+
| 2.0891 | 2180 | 0.1454 | - | - | - | - | - |
|
946 |
+
| 2.0987 | 2190 | 0.0029 | - | - | - | - | - |
|
947 |
+
| 2.1083 | 2200 | 0.0006 | - | - | - | - | - |
|
948 |
+
| 2.1179 | 2210 | 0.0001 | - | - | - | - | - |
|
949 |
+
| 2.1275 | 2220 | 0.0129 | - | - | - | - | - |
|
950 |
+
| 2.1370 | 2230 | 0.0001 | - | - | - | - | - |
|
951 |
+
| 2.1466 | 2240 | 0.0003 | - | - | - | - | - |
|
952 |
+
| 2.1562 | 2250 | 0.4145 | - | - | - | - | - |
|
953 |
+
| 2.1658 | 2260 | 0.0048 | - | - | - | - | - |
|
954 |
+
| 2.1754 | 2270 | 0.0706 | - | - | - | - | - |
|
955 |
+
| 2.1850 | 2280 | 0.0026 | - | - | - | - | - |
|
956 |
+
| 2.1945 | 2290 | 0.008 | - | - | - | - | - |
|
957 |
+
| 2.2041 | 2300 | 0.0051 | - | - | - | - | - |
|
958 |
+
| 2.2137 | 2310 | 0.0307 | - | - | - | - | - |
|
959 |
+
| 2.2233 | 2320 | 0.0017 | - | - | - | - | - |
|
960 |
+
| 2.2329 | 2330 | 0.0005 | - | - | - | - | - |
|
961 |
+
| 2.2425 | 2340 | 0.0001 | - | - | - | - | - |
|
962 |
+
| 2.2520 | 2350 | 0.0001 | - | - | - | - | - |
|
963 |
+
| 2.2616 | 2360 | 0.0001 | - | - | - | - | - |
|
964 |
+
| 2.2712 | 2370 | 0.0461 | - | - | - | - | - |
|
965 |
+
| 2.2808 | 2380 | 0.0001 | - | - | - | - | - |
|
966 |
+
| 2.2904 | 2390 | 0.0003 | - | - | - | - | - |
|
967 |
+
| 2.3000 | 2400 | 0.001 | - | - | - | - | - |
|
968 |
+
| 2.3095 | 2410 | 0.0002 | - | - | - | - | - |
|
969 |
+
| 2.3191 | 2420 | 0.1568 | - | - | - | - | - |
|
970 |
+
| 2.3287 | 2430 | 0.0001 | - | - | - | - | - |
|
971 |
+
| 2.3383 | 2440 | 0.0005 | - | - | - | - | - |
|
972 |
+
| 2.3479 | 2450 | 0.0072 | - | - | - | - | - |
|
973 |
+
| 2.3575 | 2460 | 0.014 | - | - | - | - | - |
|
974 |
+
| 2.3670 | 2470 | 0.0003 | - | - | - | - | - |
|
975 |
+
| 2.3766 | 2480 | 0.0 | - | - | - | - | - |
|
976 |
+
| 2.3862 | 2490 | 0.0001 | - | - | - | - | - |
|
977 |
+
| 2.3958 | 2500 | 0.0008 | - | - | - | - | - |
|
978 |
+
| 2.4054 | 2510 | 0.0 | - | - | - | - | - |
|
979 |
+
| 2.4149 | 2520 | 0.0002 | - | - | - | - | - |
|
980 |
+
| 2.4245 | 2530 | 0.061 | - | - | - | - | - |
|
981 |
+
| 2.4341 | 2540 | 0.0005 | - | - | - | - | - |
|
982 |
+
| 2.4437 | 2550 | 0.0 | - | - | - | - | - |
|
983 |
+
| 2.4533 | 2560 | 0.0003 | - | - | - | - | - |
|
984 |
+
| 2.4629 | 2570 | 0.0095 | - | - | - | - | - |
|
985 |
+
| 2.4724 | 2580 | 0.0002 | - | - | - | - | - |
|
986 |
+
| 2.4820 | 2590 | 0.0 | - | - | - | - | - |
|
987 |
+
| 2.4916 | 2600 | 0.0003 | - | - | - | - | - |
|
988 |
+
| 2.5012 | 2610 | 0.0002 | - | - | - | - | - |
|
989 |
+
| 2.5108 | 2620 | 0.0035 | - | - | - | - | - |
|
990 |
+
| 2.5204 | 2630 | 0.0001 | - | - | - | - | - |
|
991 |
+
| 2.5299 | 2640 | 0.0 | - | - | - | - | - |
|
992 |
+
| 2.5395 | 2650 | 0.0017 | - | - | - | - | - |
|
993 |
+
| 2.5491 | 2660 | 0.0 | - | - | - | - | - |
|
994 |
+
| 2.5587 | 2670 | 0.0066 | - | - | - | - | - |
|
995 |
+
| 2.5683 | 2680 | 0.0004 | - | - | - | - | - |
|
996 |
+
| 2.5779 | 2690 | 0.0001 | - | - | - | - | - |
|
997 |
+
| 2.5874 | 2700 | 0.0 | - | - | - | - | - |
|
998 |
+
| 2.5970 | 2710 | 0.0 | - | - | - | - | - |
|
999 |
+
| 2.6066 | 2720 | 0.131 | - | - | - | - | - |
|
1000 |
+
| 2.6162 | 2730 | 0.0001 | - | - | - | - | - |
|
1001 |
+
| 2.6258 | 2740 | 0.0001 | - | - | - | - | - |
|
1002 |
+
| 2.6354 | 2750 | 0.0001 | - | - | - | - | - |
|
1003 |
+
| 2.6449 | 2760 | 0.0 | - | - | - | - | - |
|
1004 |
+
| 2.6545 | 2770 | 0.0003 | - | - | - | - | - |
|
1005 |
+
| 2.6641 | 2780 | 0.0095 | - | - | - | - | - |
|
1006 |
+
| 2.6737 | 2790 | 0.0 | - | - | - | - | - |
|
1007 |
+
| 2.6833 | 2800 | 0.0003 | - | - | - | - | - |
|
1008 |
+
| 2.6929 | 2810 | 0.0001 | - | - | - | - | - |
|
1009 |
+
| 2.7024 | 2820 | 0.0002 | - | - | - | - | - |
|
1010 |
+
| 2.7120 | 2830 | 0.0007 | - | - | - | - | - |
|
1011 |
+
| 2.7216 | 2840 | 0.0008 | - | - | - | - | - |
|
1012 |
+
| 2.7312 | 2850 | 0.0 | - | - | - | - | - |
|
1013 |
+
| 2.7408 | 2860 | 0.0002 | - | - | - | - | - |
|
1014 |
+
| 2.7504 | 2870 | 0.0003 | - | - | - | - | - |
|
1015 |
+
| 2.7599 | 2880 | 0.0062 | - | - | - | - | - |
|
1016 |
+
| 2.7695 | 2890 | 0.0415 | - | - | - | - | - |
|
1017 |
+
| 2.7791 | 2900 | 0.0002 | - | - | - | - | - |
|
1018 |
+
| 2.7887 | 2910 | 0.0024 | - | - | - | - | - |
|
1019 |
+
| 2.7983 | 2920 | 0.0022 | - | - | - | - | - |
|
1020 |
+
| 2.8079 | 2930 | 0.0014 | - | - | - | - | - |
|
1021 |
+
| 2.8174 | 2940 | 0.1301 | - | - | - | - | - |
|
1022 |
+
| 2.8270 | 2950 | 0.0 | - | - | - | - | - |
|
1023 |
+
| 2.8366 | 2960 | 0.0 | - | - | - | - | - |
|
1024 |
+
| 2.8462 | 2970 | 0.0 | - | - | - | - | - |
|
1025 |
+
| 2.8558 | 2980 | 0.0006 | - | - | - | - | - |
|
1026 |
+
| 2.8654 | 2990 | 0.0 | - | - | - | - | - |
|
1027 |
+
| 2.8749 | 3000 | 0.0235 | - | - | - | - | - |
|
1028 |
+
| 2.8845 | 3010 | 0.0001 | - | - | - | - | - |
|
1029 |
+
| 2.8941 | 3020 | 0.0285 | - | - | - | - | - |
|
1030 |
+
| 2.9037 | 3030 | 0.0 | - | - | - | - | - |
|
1031 |
+
| 2.9133 | 3040 | 0.0002 | - | - | - | - | - |
|
1032 |
+
| 2.9229 | 3050 | 0.0 | - | - | - | - | - |
|
1033 |
+
| 2.9324 | 3060 | 0.0005 | - | - | - | - | - |
|
1034 |
+
| 2.9420 | 3070 | 0.0001 | - | - | - | - | - |
|
1035 |
+
| 2.9516 | 3080 | 0.0011 | - | - | - | - | - |
|
1036 |
+
| 2.9612 | 3090 | 0.0 | - | - | - | - | - |
|
1037 |
+
| 2.9708 | 3100 | 0.0001 | - | - | - | - | - |
|
1038 |
+
| 2.9804 | 3110 | 0.0046 | - | - | - | - | - |
|
1039 |
+
| 2.9899 | 3120 | 0.0001 | - | - | - | - | - |
|
1040 |
+
| **2.9995** | **3130** | **0.0005** | **0.1622** | **0.1647** | **0.1635** | **0.1564** | **0.1617** |
|
1041 |
+
| 3.0091 | 3140 | 0.0 | - | - | - | - | - |
|
1042 |
+
| 3.0187 | 3150 | 0.0 | - | - | - | - | - |
|
1043 |
+
| 3.0283 | 3160 | 0.0 | - | - | - | - | - |
|
1044 |
+
| 3.0379 | 3170 | 0.0002 | - | - | - | - | - |
|
1045 |
+
| 3.0474 | 3180 | 0.0004 | - | - | - | - | - |
|
1046 |
+
| 3.0570 | 3190 | 0.1022 | - | - | - | - | - |
|
1047 |
+
| 3.0666 | 3200 | 0.0012 | - | - | - | - | - |
|
1048 |
+
| 3.0762 | 3210 | 0.0001 | - | - | - | - | - |
|
1049 |
+
| 3.0858 | 3220 | 0.0677 | - | - | - | - | - |
|
1050 |
+
| 3.0954 | 3230 | 0.0 | - | - | - | - | - |
|
1051 |
+
| 3.1049 | 3240 | 0.0002 | - | - | - | - | - |
|
1052 |
+
| 3.1145 | 3250 | 0.0001 | - | - | - | - | - |
|
1053 |
+
| 3.1241 | 3260 | 0.0005 | - | - | - | - | - |
|
1054 |
+
| 3.1337 | 3270 | 0.0002 | - | - | - | - | - |
|
1055 |
+
| 3.1433 | 3280 | 0.0 | - | - | - | - | - |
|
1056 |
+
| 3.1529 | 3290 | 0.0021 | - | - | - | - | - |
|
1057 |
+
| 3.1624 | 3300 | 0.0001 | - | - | - | - | - |
|
1058 |
+
| 3.1720 | 3310 | 0.0077 | - | - | - | - | - |
|
1059 |
+
| 3.1816 | 3320 | 0.0001 | - | - | - | - | - |
|
1060 |
+
| 3.1912 | 3330 | 0.1324 | - | - | - | - | - |
|
1061 |
+
| 3.2008 | 3340 | 0.0 | - | - | - | - | - |
|
1062 |
+
| 3.2103 | 3350 | 0.1278 | - | - | - | - | - |
|
1063 |
+
| 3.2199 | 3360 | 0.0001 | - | - | - | - | - |
|
1064 |
+
| 3.2295 | 3370 | 0.0 | - | - | - | - | - |
|
1065 |
+
| 3.2391 | 3380 | 0.0001 | - | - | - | - | - |
|
1066 |
+
| 3.2487 | 3390 | 0.0001 | - | - | - | - | - |
|
1067 |
+
| 3.2583 | 3400 | 0.0 | - | - | - | - | - |
|
1068 |
+
| 3.2678 | 3410 | 0.0001 | - | - | - | - | - |
|
1069 |
+
| 3.2774 | 3420 | 0.0 | - | - | - | - | - |
|
1070 |
+
| 3.2870 | 3430 | 0.0001 | - | - | - | - | - |
|
1071 |
+
| 3.2966 | 3440 | 0.0001 | - | - | - | - | - |
|
1072 |
+
| 3.3062 | 3450 | 0.0001 | - | - | - | - | - |
|
1073 |
+
| 3.3158 | 3460 | 0.0263 | - | - | - | - | - |
|
1074 |
+
| 3.3253 | 3470 | 0.0001 | - | - | - | - | - |
|
1075 |
+
| 3.3349 | 3480 | 0.0002 | - | - | - | - | - |
|
1076 |
+
| 3.3445 | 3490 | 0.0003 | - | - | - | - | - |
|
1077 |
+
| 3.3541 | 3500 | 0.0 | - | - | - | - | - |
|
1078 |
+
| 3.3637 | 3510 | 0.0 | - | - | - | - | - |
|
1079 |
+
| 3.3733 | 3520 | 0.0 | - | - | - | - | - |
|
1080 |
+
| 3.3828 | 3530 | 0.0002 | - | - | - | - | - |
|
1081 |
+
| 3.3924 | 3540 | 0.0001 | - | - | - | - | - |
|
1082 |
+
| 3.4020 | 3550 | 0.0 | - | - | - | - | - |
|
1083 |
+
| 3.4116 | 3560 | 0.0001 | - | - | - | - | - |
|
1084 |
+
| 3.4212 | 3570 | 0.0001 | - | - | - | - | - |
|
1085 |
+
| 3.4308 | 3580 | 0.0122 | - | - | - | - | - |
|
1086 |
+
| 3.4403 | 3590 | 0.0 | - | - | - | - | - |
|
1087 |
+
| 3.4499 | 3600 | 0.0001 | - | - | - | - | - |
|
1088 |
+
| 3.4595 | 3610 | 0.0003 | - | - | - | - | - |
|
1089 |
+
| 3.4691 | 3620 | 0.0 | - | - | - | - | - |
|
1090 |
+
| 3.4787 | 3630 | 0.0 | - | - | - | - | - |
|
1091 |
+
| 3.4883 | 3640 | 0.0001 | - | - | - | - | - |
|
1092 |
+
| 3.4978 | 3650 | 0.0 | - | - | - | - | - |
|
1093 |
+
| 3.5074 | 3660 | 0.0002 | - | - | - | - | - |
|
1094 |
+
| 3.5170 | 3670 | 0.0004 | - | - | - | - | - |
|
1095 |
+
| 3.5266 | 3680 | 0.0003 | - | - | - | - | - |
|
1096 |
+
| 3.5362 | 3690 | 0.0004 | - | - | - | - | - |
|
1097 |
+
| 3.5458 | 3700 | 0.0 | - | - | - | - | - |
|
1098 |
+
| 3.5553 | 3710 | 0.0001 | - | - | - | - | - |
|
1099 |
+
| 3.5649 | 3720 | 0.0001 | - | - | - | - | - |
|
1100 |
+
| 3.5745 | 3730 | 0.0 | - | - | - | - | - |
|
1101 |
+
| 3.5841 | 3740 | 0.0001 | - | - | - | - | - |
|
1102 |
+
| 3.5937 | 3750 | 0.0003 | - | - | - | - | - |
|
1103 |
+
| 3.6033 | 3760 | 0.0 | - | - | - | - | - |
|
1104 |
+
| 3.6128 | 3770 | 0.0002 | - | - | - | - | - |
|
1105 |
+
| 3.6224 | 3780 | 0.0 | - | - | - | - | - |
|
1106 |
+
| 3.6320 | 3790 | 0.0 | - | - | - | - | - |
|
1107 |
+
| 3.6416 | 3800 | 0.0 | - | - | - | - | - |
|
1108 |
+
| 3.6512 | 3810 | 0.0 | - | - | - | - | - |
|
1109 |
+
| 3.6608 | 3820 | 0.0 | - | - | - | - | - |
|
1110 |
+
| 3.6703 | 3830 | 0.0 | - | - | - | - | - |
|
1111 |
+
| 3.6799 | 3840 | 0.0001 | - | - | - | - | - |
|
1112 |
+
| 3.6895 | 3850 | 0.0001 | - | - | - | - | - |
|
1113 |
+
| 3.6991 | 3860 | 0.0002 | - | - | - | - | - |
|
1114 |
+
| 3.7087 | 3870 | 0.0 | - | - | - | - | - |
|
1115 |
+
| 3.7183 | 3880 | 0.0001 | - | - | - | - | - |
|
1116 |
+
| 3.7278 | 3890 | 0.0002 | - | - | - | - | - |
|
1117 |
+
| 3.7374 | 3900 | 0.0001 | - | - | - | - | - |
|
1118 |
+
| 3.7470 | 3910 | 0.0003 | - | - | - | - | - |
|
1119 |
+
| 3.7566 | 3920 | 0.0003 | - | - | - | - | - |
|
1120 |
+
| 3.7662 | 3930 | 0.0021 | - | - | - | - | - |
|
1121 |
+
| 3.7758 | 3940 | 0.0002 | - | - | - | - | - |
|
1122 |
+
| 3.7853 | 3950 | 0.0001 | - | - | - | - | - |
|
1123 |
+
| 3.7949 | 3960 | 0.0001 | - | - | - | - | - |
|
1124 |
+
| 3.8045 | 3970 | 0.0001 | - | - | - | - | - |
|
1125 |
+
| 3.8141 | 3980 | 0.0002 | - | - | - | - | - |
|
1126 |
+
| 3.8237 | 3990 | 0.0001 | - | - | - | - | - |
|
1127 |
+
| 3.8333 | 4000 | 0.0001 | - | - | - | - | - |
|
1128 |
+
| 3.8428 | 4010 | 0.0001 | - | - | - | - | - |
|
1129 |
+
| 3.8524 | 4020 | 0.0001 | - | - | - | - | - |
|
1130 |
+
| 3.8620 | 4030 | 0.0 | - | - | - | - | - |
|
1131 |
+
| 3.8716 | 4040 | 0.0003 | - | - | - | - | - |
|
1132 |
+
| 3.8812 | 4050 | 0.0 | - | - | - | - | - |
|
1133 |
+
| 3.8908 | 4060 | 0.002 | - | - | - | - | - |
|
1134 |
+
| 3.9003 | 4070 | 0.0 | - | - | - | - | - |
|
1135 |
+
| 3.9099 | 4080 | 0.0 | - | - | - | - | - |
|
1136 |
+
| 3.9195 | 4090 | 0.0001 | - | - | - | - | - |
|
1137 |
+
| 3.9291 | 4100 | 0.0 | - | - | - | - | - |
|
1138 |
+
| 3.9387 | 4110 | 0.0 | - | - | - | - | - |
|
1139 |
+
| 3.9483 | 4120 | 0.0 | - | - | - | - | - |
|
1140 |
+
| 3.9578 | 4130 | 0.0 | - | - | - | - | - |
|
1141 |
+
| 3.9674 | 4140 | 0.0 | - | - | - | - | - |
|
1142 |
+
| 3.9770 | 4150 | 0.0 | - | - | - | - | - |
|
1143 |
+
| 3.9866 | 4160 | 0.0004 | - | - | - | - | - |
|
1144 |
+
| 3.9962 | 4170 | 0.0 | - | - | - | - | - |
|
1145 |
+
| 3.9981 | 4172 | - | 0.1592 | 0.1658 | 0.1660 | 0.1580 | 0.1671 |
|
1146 |
+
|
1147 |
+
* The bold row denotes the saved checkpoint.
|
1148 |
+
</details>
|
1149 |
+
|
1150 |
+
### Framework Versions
|
1151 |
+
- Python: 3.10.12
|
1152 |
+
- Sentence Transformers: 3.0.1
|
1153 |
+
- Transformers: 4.42.4
|
1154 |
+
- PyTorch: 2.3.1+cu121
|
1155 |
+
- Accelerate: 0.34.0.dev0
|
1156 |
+
- Datasets: 2.21.0
|
1157 |
+
- Tokenizers: 0.19.1
|
1158 |
+
|
1159 |
+
## Citation
|
1160 |
+
|
1161 |
+
### BibTeX
|
1162 |
+
|
1163 |
+
#### Sentence Transformers
|
1164 |
+
```bibtex
|
1165 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1166 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1167 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1168 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1169 |
+
month = "11",
|
1170 |
+
year = "2019",
|
1171 |
+
publisher = "Association for Computational Linguistics",
|
1172 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1173 |
+
}
|
1174 |
+
```
|
1175 |
+
|
1176 |
+
#### MatryoshkaLoss
|
1177 |
+
```bibtex
|
1178 |
+
@misc{kusupati2024matryoshka,
|
1179 |
+
title={Matryoshka Representation Learning},
|
1180 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1181 |
+
year={2024},
|
1182 |
+
eprint={2205.13147},
|
1183 |
+
archivePrefix={arXiv},
|
1184 |
+
primaryClass={cs.LG}
|
1185 |
+
}
|
1186 |
+
```
|
1187 |
+
|
1188 |
+
#### MultipleNegativesRankingLoss
|
1189 |
+
```bibtex
|
1190 |
+
@misc{henderson2017efficient,
|
1191 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1192 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1193 |
+
year={2017},
|
1194 |
+
eprint={1705.00652},
|
1195 |
+
archivePrefix={arXiv},
|
1196 |
+
primaryClass={cs.CL}
|
1197 |
+
}
|
1198 |
+
```
|
1199 |
+
|
1200 |
+
<!--
|
1201 |
+
## Glossary
|
1202 |
+
|
1203 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1204 |
+
-->
|
1205 |
+
|
1206 |
+
<!--
|
1207 |
+
## Model Card Authors
|
1208 |
+
|
1209 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1210 |
+
-->
|
1211 |
+
|
1212 |
+
<!--
|
1213 |
+
## Model Card Contact
|
1214 |
+
|
1215 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1216 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-m3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.42.4",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b796a12ea0352a66b71c2ed1b859eb6c7ebd5cb4f2fcd3cd23eae415157ac2fa
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|