adriansanz commited on
Commit
4b93744
1 Parent(s): 4d9e730

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:4173
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: Si dins el termini que s'hagi atorgat amb aquesta finalitat els
33
+ habitatges que en disposen no s'han adaptat, la llicència pot ésser revocada.
34
+ sentences:
35
+ - Qui pot sol·licitar la pròrroga de la prestació?
36
+ - Quin és el resultat de la constatació dels fets denunciats per part de l'Ajuntament?
37
+ - Què passa si no s'adapten els habitatges d'ús turístic dins el termini establert?
38
+ - source_sentence: En cas que a la sepultura hi hagi despulles, la persona titular
39
+ podrà triar entre traslladar-les a una altra sepultura de la què en sigui el/la
40
+ titular o bé que l'Ajuntament les traslladi a l'ossera general.
41
+ sentences:
42
+ - Què passa amb les despulles si la persona titular decideix traslladar-les a una
43
+ altra sepultura?
44
+ - Quins són els beneficis de la llicència de publicitat dinàmica?
45
+ - Quan es va aprovar els models d'aval per part de la Junta de Govern Local?
46
+ - source_sentence: La colònia felina té un paper important en la reducció del nombre
47
+ d'animals abandonats, ja que proporciona un refugi segur i un entorn adequat per
48
+ als animals que es troben en situació de risc o abandonament.
49
+ sentences:
50
+ - Quin és el termini per justificar la realització del projecte/activitat subvencionada?
51
+ - Quins són els tractaments mèdics que beneficien la salut de l'empleat municipal?
52
+ - Quin és el paper de la colònia felina en la reducció del nombre d'animals abandonats?
53
+ - source_sentence: 'La realització de les obres que s’indiquen a continuació està
54
+ subjecta a l’obtenció d’una llicència d’obra major atorgada per l’Ajuntament:
55
+ ... Compartimentació de naus industrials existents...'
56
+ sentences:
57
+ - Quin tipus d’obra es refereix a la compartimentació de naus industrials existents?
58
+ - Quin és el benefici principal del tràmit de canvi de titular de la llicència de
59
+ gual?
60
+ - Quin és el tipus de garantia que es pot fer mitjançant una assegurança de caució?
61
+ - source_sentence: Els membres de la Corporació tenen dret a obtenir dels òrgans de
62
+ l'Ajuntament les dades o informacions...
63
+ sentences:
64
+ - Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels
65
+ membres de la Corporació?
66
+ - Quin és el motiu principal perquè un beneficiari pugui perdre el dret a una subvenció?
67
+ - Quin és el benefici de la presentació de recursos?
68
+ model-index:
69
+ - name: SentenceTransformer based on BAAI/bge-m3
70
+ results:
71
+ - task:
72
+ type: information-retrieval
73
+ name: Information Retrieval
74
+ dataset:
75
+ name: dim 768
76
+ type: dim_768
77
+ metrics:
78
+ - type: cosine_accuracy@1
79
+ value: 0.07543103448275862
80
+ name: Cosine Accuracy@1
81
+ - type: cosine_accuracy@3
82
+ value: 0.14439655172413793
83
+ name: Cosine Accuracy@3
84
+ - type: cosine_accuracy@5
85
+ value: 0.21336206896551724
86
+ name: Cosine Accuracy@5
87
+ - type: cosine_accuracy@10
88
+ value: 0.3900862068965517
89
+ name: Cosine Accuracy@10
90
+ - type: cosine_precision@1
91
+ value: 0.07543103448275862
92
+ name: Cosine Precision@1
93
+ - type: cosine_precision@3
94
+ value: 0.048132183908045974
95
+ name: Cosine Precision@3
96
+ - type: cosine_precision@5
97
+ value: 0.04267241379310344
98
+ name: Cosine Precision@5
99
+ - type: cosine_precision@10
100
+ value: 0.039008620689655174
101
+ name: Cosine Precision@10
102
+ - type: cosine_recall@1
103
+ value: 0.07543103448275862
104
+ name: Cosine Recall@1
105
+ - type: cosine_recall@3
106
+ value: 0.14439655172413793
107
+ name: Cosine Recall@3
108
+ - type: cosine_recall@5
109
+ value: 0.21336206896551724
110
+ name: Cosine Recall@5
111
+ - type: cosine_recall@10
112
+ value: 0.3900862068965517
113
+ name: Cosine Recall@10
114
+ - type: cosine_ndcg@10
115
+ value: 0.19775448839983267
116
+ name: Cosine Ndcg@10
117
+ - type: cosine_mrr@10
118
+ value: 0.14087729200875768
119
+ name: Cosine Mrr@10
120
+ - type: cosine_map@100
121
+ value: 0.1670966505747688
122
+ name: Cosine Map@100
123
+ - task:
124
+ type: information-retrieval
125
+ name: Information Retrieval
126
+ dataset:
127
+ name: dim 512
128
+ type: dim_512
129
+ metrics:
130
+ - type: cosine_accuracy@1
131
+ value: 0.07543103448275862
132
+ name: Cosine Accuracy@1
133
+ - type: cosine_accuracy@3
134
+ value: 0.1400862068965517
135
+ name: Cosine Accuracy@3
136
+ - type: cosine_accuracy@5
137
+ value: 0.20905172413793102
138
+ name: Cosine Accuracy@5
139
+ - type: cosine_accuracy@10
140
+ value: 0.3922413793103448
141
+ name: Cosine Accuracy@10
142
+ - type: cosine_precision@1
143
+ value: 0.07543103448275862
144
+ name: Cosine Precision@1
145
+ - type: cosine_precision@3
146
+ value: 0.046695402298850566
147
+ name: Cosine Precision@3
148
+ - type: cosine_precision@5
149
+ value: 0.04181034482758621
150
+ name: Cosine Precision@5
151
+ - type: cosine_precision@10
152
+ value: 0.03922413793103448
153
+ name: Cosine Precision@10
154
+ - type: cosine_recall@1
155
+ value: 0.07543103448275862
156
+ name: Cosine Recall@1
157
+ - type: cosine_recall@3
158
+ value: 0.1400862068965517
159
+ name: Cosine Recall@3
160
+ - type: cosine_recall@5
161
+ value: 0.20905172413793102
162
+ name: Cosine Recall@5
163
+ - type: cosine_recall@10
164
+ value: 0.3922413793103448
165
+ name: Cosine Recall@10
166
+ - type: cosine_ndcg@10
167
+ value: 0.1973388128367381
168
+ name: Cosine Ndcg@10
169
+ - type: cosine_mrr@10
170
+ value: 0.14006910235358525
171
+ name: Cosine Mrr@10
172
+ - type: cosine_map@100
173
+ value: 0.1660059682423787
174
+ name: Cosine Map@100
175
+ - task:
176
+ type: information-retrieval
177
+ name: Information Retrieval
178
+ dataset:
179
+ name: dim 256
180
+ type: dim_256
181
+ metrics:
182
+ - type: cosine_accuracy@1
183
+ value: 0.07112068965517242
184
+ name: Cosine Accuracy@1
185
+ - type: cosine_accuracy@3
186
+ value: 0.14439655172413793
187
+ name: Cosine Accuracy@3
188
+ - type: cosine_accuracy@5
189
+ value: 0.20905172413793102
190
+ name: Cosine Accuracy@5
191
+ - type: cosine_accuracy@10
192
+ value: 0.3793103448275862
193
+ name: Cosine Accuracy@10
194
+ - type: cosine_precision@1
195
+ value: 0.07112068965517242
196
+ name: Cosine Precision@1
197
+ - type: cosine_precision@3
198
+ value: 0.048132183908045974
199
+ name: Cosine Precision@3
200
+ - type: cosine_precision@5
201
+ value: 0.04181034482758621
202
+ name: Cosine Precision@5
203
+ - type: cosine_precision@10
204
+ value: 0.03793103448275861
205
+ name: Cosine Precision@10
206
+ - type: cosine_recall@1
207
+ value: 0.07112068965517242
208
+ name: Cosine Recall@1
209
+ - type: cosine_recall@3
210
+ value: 0.14439655172413793
211
+ name: Cosine Recall@3
212
+ - type: cosine_recall@5
213
+ value: 0.20905172413793102
214
+ name: Cosine Recall@5
215
+ - type: cosine_recall@10
216
+ value: 0.3793103448275862
217
+ name: Cosine Recall@10
218
+ - type: cosine_ndcg@10
219
+ value: 0.19451734912520316
220
+ name: Cosine Ndcg@10
221
+ - type: cosine_mrr@10
222
+ value: 0.13957307060755345
223
+ name: Cosine Mrr@10
224
+ - type: cosine_map@100
225
+ value: 0.1658323397622155
226
+ name: Cosine Map@100
227
+ - task:
228
+ type: information-retrieval
229
+ name: Information Retrieval
230
+ dataset:
231
+ name: dim 128
232
+ type: dim_128
233
+ metrics:
234
+ - type: cosine_accuracy@1
235
+ value: 0.06465517241379311
236
+ name: Cosine Accuracy@1
237
+ - type: cosine_accuracy@3
238
+ value: 0.13793103448275862
239
+ name: Cosine Accuracy@3
240
+ - type: cosine_accuracy@5
241
+ value: 0.21336206896551724
242
+ name: Cosine Accuracy@5
243
+ - type: cosine_accuracy@10
244
+ value: 0.3577586206896552
245
+ name: Cosine Accuracy@10
246
+ - type: cosine_precision@1
247
+ value: 0.06465517241379311
248
+ name: Cosine Precision@1
249
+ - type: cosine_precision@3
250
+ value: 0.04597701149425287
251
+ name: Cosine Precision@3
252
+ - type: cosine_precision@5
253
+ value: 0.04267241379310345
254
+ name: Cosine Precision@5
255
+ - type: cosine_precision@10
256
+ value: 0.03577586206896552
257
+ name: Cosine Precision@10
258
+ - type: cosine_recall@1
259
+ value: 0.06465517241379311
260
+ name: Cosine Recall@1
261
+ - type: cosine_recall@3
262
+ value: 0.13793103448275862
263
+ name: Cosine Recall@3
264
+ - type: cosine_recall@5
265
+ value: 0.21336206896551724
266
+ name: Cosine Recall@5
267
+ - type: cosine_recall@10
268
+ value: 0.3577586206896552
269
+ name: Cosine Recall@10
270
+ - type: cosine_ndcg@10
271
+ value: 0.18381656342161204
272
+ name: Cosine Ndcg@10
273
+ - type: cosine_mrr@10
274
+ value: 0.13181616037219498
275
+ name: Cosine Mrr@10
276
+ - type: cosine_map@100
277
+ value: 0.15919561658705733
278
+ name: Cosine Map@100
279
+ - task:
280
+ type: information-retrieval
281
+ name: Information Retrieval
282
+ dataset:
283
+ name: dim 64
284
+ type: dim_64
285
+ metrics:
286
+ - type: cosine_accuracy@1
287
+ value: 0.06896551724137931
288
+ name: Cosine Accuracy@1
289
+ - type: cosine_accuracy@3
290
+ value: 0.13577586206896552
291
+ name: Cosine Accuracy@3
292
+ - type: cosine_accuracy@5
293
+ value: 0.20905172413793102
294
+ name: Cosine Accuracy@5
295
+ - type: cosine_accuracy@10
296
+ value: 0.35344827586206895
297
+ name: Cosine Accuracy@10
298
+ - type: cosine_precision@1
299
+ value: 0.06896551724137931
300
+ name: Cosine Precision@1
301
+ - type: cosine_precision@3
302
+ value: 0.04525862068965517
303
+ name: Cosine Precision@3
304
+ - type: cosine_precision@5
305
+ value: 0.041810344827586214
306
+ name: Cosine Precision@5
307
+ - type: cosine_precision@10
308
+ value: 0.03534482758620689
309
+ name: Cosine Precision@10
310
+ - type: cosine_recall@1
311
+ value: 0.06896551724137931
312
+ name: Cosine Recall@1
313
+ - type: cosine_recall@3
314
+ value: 0.13577586206896552
315
+ name: Cosine Recall@3
316
+ - type: cosine_recall@5
317
+ value: 0.20905172413793102
318
+ name: Cosine Recall@5
319
+ - type: cosine_recall@10
320
+ value: 0.35344827586206895
321
+ name: Cosine Recall@10
322
+ - type: cosine_ndcg@10
323
+ value: 0.18256713591724985
324
+ name: Cosine Ndcg@10
325
+ - type: cosine_mrr@10
326
+ value: 0.131704980842912
327
+ name: Cosine Mrr@10
328
+ - type: cosine_map@100
329
+ value: 0.1580121500031178
330
+ name: Cosine Map@100
331
+ ---
332
+
333
+ # SentenceTransformer based on BAAI/bge-m3
334
+
335
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
336
+
337
+ ## Model Details
338
+
339
+ ### Model Description
340
+ - **Model Type:** Sentence Transformer
341
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
342
+ - **Maximum Sequence Length:** 8192 tokens
343
+ - **Output Dimensionality:** 1024 tokens
344
+ - **Similarity Function:** Cosine Similarity
345
+ <!-- - **Training Dataset:** Unknown -->
346
+ <!-- - **Language:** Unknown -->
347
+ <!-- - **License:** Unknown -->
348
+
349
+ ### Model Sources
350
+
351
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
352
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
353
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
354
+
355
+ ### Full Model Architecture
356
+
357
+ ```
358
+ SentenceTransformer(
359
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
360
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
361
+ (2): Normalize()
362
+ )
363
+ ```
364
+
365
+ ## Usage
366
+
367
+ ### Direct Usage (Sentence Transformers)
368
+
369
+ First install the Sentence Transformers library:
370
+
371
+ ```bash
372
+ pip install -U sentence-transformers
373
+ ```
374
+
375
+ Then you can load this model and run inference.
376
+ ```python
377
+ from sentence_transformers import SentenceTransformer
378
+
379
+ # Download from the 🤗 Hub
380
+ model = SentenceTransformer("adriansanz/sitges2608bai-4ep")
381
+ # Run inference
382
+ sentences = [
383
+ "Els membres de la Corporació tenen dret a obtenir dels òrgans de l'Ajuntament les dades o informacions...",
384
+ "Quin és el paper dels òrgans de l'Ajuntament en relació amb les sol·licituds dels membres de la Corporació?",
385
+ 'Quin és el benefici de la presentació de recursos?',
386
+ ]
387
+ embeddings = model.encode(sentences)
388
+ print(embeddings.shape)
389
+ # [3, 1024]
390
+
391
+ # Get the similarity scores for the embeddings
392
+ similarities = model.similarity(embeddings, embeddings)
393
+ print(similarities.shape)
394
+ # [3, 3]
395
+ ```
396
+
397
+ <!--
398
+ ### Direct Usage (Transformers)
399
+
400
+ <details><summary>Click to see the direct usage in Transformers</summary>
401
+
402
+ </details>
403
+ -->
404
+
405
+ <!--
406
+ ### Downstream Usage (Sentence Transformers)
407
+
408
+ You can finetune this model on your own dataset.
409
+
410
+ <details><summary>Click to expand</summary>
411
+
412
+ </details>
413
+ -->
414
+
415
+ <!--
416
+ ### Out-of-Scope Use
417
+
418
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
419
+ -->
420
+
421
+ ## Evaluation
422
+
423
+ ### Metrics
424
+
425
+ #### Information Retrieval
426
+ * Dataset: `dim_768`
427
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
428
+
429
+ | Metric | Value |
430
+ |:--------------------|:-----------|
431
+ | cosine_accuracy@1 | 0.0754 |
432
+ | cosine_accuracy@3 | 0.1444 |
433
+ | cosine_accuracy@5 | 0.2134 |
434
+ | cosine_accuracy@10 | 0.3901 |
435
+ | cosine_precision@1 | 0.0754 |
436
+ | cosine_precision@3 | 0.0481 |
437
+ | cosine_precision@5 | 0.0427 |
438
+ | cosine_precision@10 | 0.039 |
439
+ | cosine_recall@1 | 0.0754 |
440
+ | cosine_recall@3 | 0.1444 |
441
+ | cosine_recall@5 | 0.2134 |
442
+ | cosine_recall@10 | 0.3901 |
443
+ | cosine_ndcg@10 | 0.1978 |
444
+ | cosine_mrr@10 | 0.1409 |
445
+ | **cosine_map@100** | **0.1671** |
446
+
447
+ #### Information Retrieval
448
+ * Dataset: `dim_512`
449
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
450
+
451
+ | Metric | Value |
452
+ |:--------------------|:----------|
453
+ | cosine_accuracy@1 | 0.0754 |
454
+ | cosine_accuracy@3 | 0.1401 |
455
+ | cosine_accuracy@5 | 0.2091 |
456
+ | cosine_accuracy@10 | 0.3922 |
457
+ | cosine_precision@1 | 0.0754 |
458
+ | cosine_precision@3 | 0.0467 |
459
+ | cosine_precision@5 | 0.0418 |
460
+ | cosine_precision@10 | 0.0392 |
461
+ | cosine_recall@1 | 0.0754 |
462
+ | cosine_recall@3 | 0.1401 |
463
+ | cosine_recall@5 | 0.2091 |
464
+ | cosine_recall@10 | 0.3922 |
465
+ | cosine_ndcg@10 | 0.1973 |
466
+ | cosine_mrr@10 | 0.1401 |
467
+ | **cosine_map@100** | **0.166** |
468
+
469
+ #### Information Retrieval
470
+ * Dataset: `dim_256`
471
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
472
+
473
+ | Metric | Value |
474
+ |:--------------------|:-----------|
475
+ | cosine_accuracy@1 | 0.0711 |
476
+ | cosine_accuracy@3 | 0.1444 |
477
+ | cosine_accuracy@5 | 0.2091 |
478
+ | cosine_accuracy@10 | 0.3793 |
479
+ | cosine_precision@1 | 0.0711 |
480
+ | cosine_precision@3 | 0.0481 |
481
+ | cosine_precision@5 | 0.0418 |
482
+ | cosine_precision@10 | 0.0379 |
483
+ | cosine_recall@1 | 0.0711 |
484
+ | cosine_recall@3 | 0.1444 |
485
+ | cosine_recall@5 | 0.2091 |
486
+ | cosine_recall@10 | 0.3793 |
487
+ | cosine_ndcg@10 | 0.1945 |
488
+ | cosine_mrr@10 | 0.1396 |
489
+ | **cosine_map@100** | **0.1658** |
490
+
491
+ #### Information Retrieval
492
+ * Dataset: `dim_128`
493
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
494
+
495
+ | Metric | Value |
496
+ |:--------------------|:-----------|
497
+ | cosine_accuracy@1 | 0.0647 |
498
+ | cosine_accuracy@3 | 0.1379 |
499
+ | cosine_accuracy@5 | 0.2134 |
500
+ | cosine_accuracy@10 | 0.3578 |
501
+ | cosine_precision@1 | 0.0647 |
502
+ | cosine_precision@3 | 0.046 |
503
+ | cosine_precision@5 | 0.0427 |
504
+ | cosine_precision@10 | 0.0358 |
505
+ | cosine_recall@1 | 0.0647 |
506
+ | cosine_recall@3 | 0.1379 |
507
+ | cosine_recall@5 | 0.2134 |
508
+ | cosine_recall@10 | 0.3578 |
509
+ | cosine_ndcg@10 | 0.1838 |
510
+ | cosine_mrr@10 | 0.1318 |
511
+ | **cosine_map@100** | **0.1592** |
512
+
513
+ #### Information Retrieval
514
+ * Dataset: `dim_64`
515
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
516
+
517
+ | Metric | Value |
518
+ |:--------------------|:----------|
519
+ | cosine_accuracy@1 | 0.069 |
520
+ | cosine_accuracy@3 | 0.1358 |
521
+ | cosine_accuracy@5 | 0.2091 |
522
+ | cosine_accuracy@10 | 0.3534 |
523
+ | cosine_precision@1 | 0.069 |
524
+ | cosine_precision@3 | 0.0453 |
525
+ | cosine_precision@5 | 0.0418 |
526
+ | cosine_precision@10 | 0.0353 |
527
+ | cosine_recall@1 | 0.069 |
528
+ | cosine_recall@3 | 0.1358 |
529
+ | cosine_recall@5 | 0.2091 |
530
+ | cosine_recall@10 | 0.3534 |
531
+ | cosine_ndcg@10 | 0.1826 |
532
+ | cosine_mrr@10 | 0.1317 |
533
+ | **cosine_map@100** | **0.158** |
534
+
535
+ <!--
536
+ ## Bias, Risks and Limitations
537
+
538
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
539
+ -->
540
+
541
+ <!--
542
+ ### Recommendations
543
+
544
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
545
+ -->
546
+
547
+ ## Training Details
548
+
549
+ ### Training Dataset
550
+
551
+ #### Unnamed Dataset
552
+
553
+
554
+ * Size: 4,173 training samples
555
+ * Columns: <code>positive</code> and <code>anchor</code>
556
+ * Approximate statistics based on the first 1000 samples:
557
+ | | positive | anchor |
558
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
559
+ | type | string | string |
560
+ | details | <ul><li>min: 8 tokens</li><li>mean: 48.65 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.96 tokens</li><li>max: 45 tokens</li></ul> |
561
+ * Samples:
562
+ | positive | anchor |
563
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|
564
+ | <code>Quan es produeix la caducitat del dret funerari per haver transcorregut el termini de concessió i un cop que l'Ajuntament hagi resolt el procediment legalment establert per a la declaració de caducitat, és imprescindible formalitzar la nova concessió del dret.</code> | <code>Quan es produeix la caducitat del dret funerari?</code> |
565
+ | <code>Les persones beneficiàries de l'ajut per a la creació de noves empreses per persones donades d'alta al règim especial de treballadors autònoms.</code> | <code>Quin és el tipus de persones que poden beneficiar-se de l'ajut?</code> |
566
+ | <code>Les entitats beneficiàries són les responsables de la gestió dels recursos econòmics i materials assignats per a la realització del projecte o activitat subvencionat.</code> | <code>Quin és el paper de les entitats beneficiàries en la gestió dels recursos?</code> |
567
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
568
+ ```json
569
+ {
570
+ "loss": "MultipleNegativesRankingLoss",
571
+ "matryoshka_dims": [
572
+ 768,
573
+ 512,
574
+ 256,
575
+ 128,
576
+ 64
577
+ ],
578
+ "matryoshka_weights": [
579
+ 1,
580
+ 1,
581
+ 1,
582
+ 1,
583
+ 1
584
+ ],
585
+ "n_dims_per_step": -1
586
+ }
587
+ ```
588
+
589
+ ### Training Hyperparameters
590
+ #### Non-Default Hyperparameters
591
+
592
+ - `eval_strategy`: epoch
593
+ - `per_device_train_batch_size`: 2
594
+ - `per_device_eval_batch_size`: 2
595
+ - `gradient_accumulation_steps`: 2
596
+ - `learning_rate`: 2e-05
597
+ - `num_train_epochs`: 4
598
+ - `lr_scheduler_type`: cosine
599
+ - `warmup_ratio`: 0.1
600
+ - `bf16`: True
601
+ - `tf32`: False
602
+ - `load_best_model_at_end`: True
603
+ - `optim`: adamw_torch_fused
604
+ - `batch_sampler`: no_duplicates
605
+
606
+ #### All Hyperparameters
607
+ <details><summary>Click to expand</summary>
608
+
609
+ - `overwrite_output_dir`: False
610
+ - `do_predict`: False
611
+ - `eval_strategy`: epoch
612
+ - `prediction_loss_only`: True
613
+ - `per_device_train_batch_size`: 2
614
+ - `per_device_eval_batch_size`: 2
615
+ - `per_gpu_train_batch_size`: None
616
+ - `per_gpu_eval_batch_size`: None
617
+ - `gradient_accumulation_steps`: 2
618
+ - `eval_accumulation_steps`: None
619
+ - `learning_rate`: 2e-05
620
+ - `weight_decay`: 0.0
621
+ - `adam_beta1`: 0.9
622
+ - `adam_beta2`: 0.999
623
+ - `adam_epsilon`: 1e-08
624
+ - `max_grad_norm`: 1.0
625
+ - `num_train_epochs`: 4
626
+ - `max_steps`: -1
627
+ - `lr_scheduler_type`: cosine
628
+ - `lr_scheduler_kwargs`: {}
629
+ - `warmup_ratio`: 0.1
630
+ - `warmup_steps`: 0
631
+ - `log_level`: passive
632
+ - `log_level_replica`: warning
633
+ - `log_on_each_node`: True
634
+ - `logging_nan_inf_filter`: True
635
+ - `save_safetensors`: True
636
+ - `save_on_each_node`: False
637
+ - `save_only_model`: False
638
+ - `restore_callback_states_from_checkpoint`: False
639
+ - `no_cuda`: False
640
+ - `use_cpu`: False
641
+ - `use_mps_device`: False
642
+ - `seed`: 42
643
+ - `data_seed`: None
644
+ - `jit_mode_eval`: False
645
+ - `use_ipex`: False
646
+ - `bf16`: True
647
+ - `fp16`: False
648
+ - `fp16_opt_level`: O1
649
+ - `half_precision_backend`: auto
650
+ - `bf16_full_eval`: False
651
+ - `fp16_full_eval`: False
652
+ - `tf32`: False
653
+ - `local_rank`: 0
654
+ - `ddp_backend`: None
655
+ - `tpu_num_cores`: None
656
+ - `tpu_metrics_debug`: False
657
+ - `debug`: []
658
+ - `dataloader_drop_last`: False
659
+ - `dataloader_num_workers`: 0
660
+ - `dataloader_prefetch_factor`: None
661
+ - `past_index`: -1
662
+ - `disable_tqdm`: False
663
+ - `remove_unused_columns`: True
664
+ - `label_names`: None
665
+ - `load_best_model_at_end`: True
666
+ - `ignore_data_skip`: False
667
+ - `fsdp`: []
668
+ - `fsdp_min_num_params`: 0
669
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
670
+ - `fsdp_transformer_layer_cls_to_wrap`: None
671
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
672
+ - `deepspeed`: None
673
+ - `label_smoothing_factor`: 0.0
674
+ - `optim`: adamw_torch_fused
675
+ - `optim_args`: None
676
+ - `adafactor`: False
677
+ - `group_by_length`: False
678
+ - `length_column_name`: length
679
+ - `ddp_find_unused_parameters`: None
680
+ - `ddp_bucket_cap_mb`: None
681
+ - `ddp_broadcast_buffers`: False
682
+ - `dataloader_pin_memory`: True
683
+ - `dataloader_persistent_workers`: False
684
+ - `skip_memory_metrics`: True
685
+ - `use_legacy_prediction_loop`: False
686
+ - `push_to_hub`: False
687
+ - `resume_from_checkpoint`: None
688
+ - `hub_model_id`: None
689
+ - `hub_strategy`: every_save
690
+ - `hub_private_repo`: False
691
+ - `hub_always_push`: False
692
+ - `gradient_checkpointing`: False
693
+ - `gradient_checkpointing_kwargs`: None
694
+ - `include_inputs_for_metrics`: False
695
+ - `eval_do_concat_batches`: True
696
+ - `fp16_backend`: auto
697
+ - `push_to_hub_model_id`: None
698
+ - `push_to_hub_organization`: None
699
+ - `mp_parameters`:
700
+ - `auto_find_batch_size`: False
701
+ - `full_determinism`: False
702
+ - `torchdynamo`: None
703
+ - `ray_scope`: last
704
+ - `ddp_timeout`: 1800
705
+ - `torch_compile`: False
706
+ - `torch_compile_backend`: None
707
+ - `torch_compile_mode`: None
708
+ - `dispatch_batches`: None
709
+ - `split_batches`: None
710
+ - `include_tokens_per_second`: False
711
+ - `include_num_input_tokens_seen`: False
712
+ - `neftune_noise_alpha`: None
713
+ - `optim_target_modules`: None
714
+ - `batch_eval_metrics`: False
715
+ - `eval_on_start`: False
716
+ - `batch_sampler`: no_duplicates
717
+ - `multi_dataset_batch_sampler`: proportional
718
+
719
+ </details>
720
+
721
+ ### Training Logs
722
+ <details><summary>Click to expand</summary>
723
+
724
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
725
+ |:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
726
+ | 0.0096 | 10 | 0.4269 | - | - | - | - | - |
727
+ | 0.0192 | 20 | 0.2328 | - | - | - | - | - |
728
+ | 0.0287 | 30 | 0.2803 | - | - | - | - | - |
729
+ | 0.0383 | 40 | 0.312 | - | - | - | - | - |
730
+ | 0.0479 | 50 | 0.0631 | - | - | - | - | - |
731
+ | 0.0575 | 60 | 0.1824 | - | - | - | - | - |
732
+ | 0.0671 | 70 | 0.3102 | - | - | - | - | - |
733
+ | 0.0767 | 80 | 0.2966 | - | - | - | - | - |
734
+ | 0.0862 | 90 | 0.3715 | - | - | - | - | - |
735
+ | 0.0958 | 100 | 0.0719 | - | - | - | - | - |
736
+ | 0.1054 | 110 | 0.279 | - | - | - | - | - |
737
+ | 0.1150 | 120 | 0.0954 | - | - | - | - | - |
738
+ | 0.1246 | 130 | 0.4912 | - | - | - | - | - |
739
+ | 0.1342 | 140 | 0.2877 | - | - | - | - | - |
740
+ | 0.1437 | 150 | 0.1933 | - | - | - | - | - |
741
+ | 0.1533 | 160 | 0.5942 | - | - | - | - | - |
742
+ | 0.1629 | 170 | 0.1336 | - | - | - | - | - |
743
+ | 0.1725 | 180 | 0.1755 | - | - | - | - | - |
744
+ | 0.1821 | 190 | 0.1455 | - | - | - | - | - |
745
+ | 0.1917 | 200 | 0.4391 | - | - | - | - | - |
746
+ | 0.2012 | 210 | 0.0567 | - | - | - | - | - |
747
+ | 0.2108 | 220 | 0.2368 | - | - | - | - | - |
748
+ | 0.2204 | 230 | 0.0249 | - | - | - | - | - |
749
+ | 0.2300 | 240 | 0.0518 | - | - | - | - | - |
750
+ | 0.2396 | 250 | 0.015 | - | - | - | - | - |
751
+ | 0.2492 | 260 | 0.4096 | - | - | - | - | - |
752
+ | 0.2587 | 270 | 0.115 | - | - | - | - | - |
753
+ | 0.2683 | 280 | 0.0532 | - | - | - | - | - |
754
+ | 0.2779 | 290 | 0.0407 | - | - | - | - | - |
755
+ | 0.2875 | 300 | 0.082 | - | - | - | - | - |
756
+ | 0.2971 | 310 | 0.1086 | - | - | - | - | - |
757
+ | 0.3067 | 320 | 0.0345 | - | - | - | - | - |
758
+ | 0.3162 | 330 | 0.3144 | - | - | - | - | - |
759
+ | 0.3258 | 340 | 0.0056 | - | - | - | - | - |
760
+ | 0.3354 | 350 | 0.0867 | - | - | - | - | - |
761
+ | 0.3450 | 360 | 0.1011 | - | - | - | - | - |
762
+ | 0.3546 | 370 | 0.6417 | - | - | - | - | - |
763
+ | 0.3642 | 380 | 0.0689 | - | - | - | - | - |
764
+ | 0.3737 | 390 | 0.0075 | - | - | - | - | - |
765
+ | 0.3833 | 400 | 0.0822 | - | - | - | - | - |
766
+ | 0.3929 | 410 | 0.098 | - | - | - | - | - |
767
+ | 0.4025 | 420 | 0.0442 | - | - | - | - | - |
768
+ | 0.4121 | 430 | 0.1759 | - | - | - | - | - |
769
+ | 0.4217 | 440 | 0.2625 | - | - | - | - | - |
770
+ | 0.4312 | 450 | 0.1123 | - | - | - | - | - |
771
+ | 0.4408 | 460 | 0.1174 | - | - | - | - | - |
772
+ | 0.4504 | 470 | 0.0529 | - | - | - | - | - |
773
+ | 0.4600 | 480 | 0.5396 | - | - | - | - | - |
774
+ | 0.4696 | 490 | 0.1985 | - | - | - | - | - |
775
+ | 0.4792 | 500 | 0.0016 | - | - | - | - | - |
776
+ | 0.4887 | 510 | 0.0496 | - | - | - | - | - |
777
+ | 0.4983 | 520 | 0.3138 | - | - | - | - | - |
778
+ | 0.5079 | 530 | 0.1974 | - | - | - | - | - |
779
+ | 0.5175 | 540 | 0.3489 | - | - | - | - | - |
780
+ | 0.5271 | 550 | 0.3332 | - | - | - | - | - |
781
+ | 0.5367 | 560 | 0.7838 | - | - | - | - | - |
782
+ | 0.5462 | 570 | 0.8335 | - | - | - | - | - |
783
+ | 0.5558 | 580 | 0.5018 | - | - | - | - | - |
784
+ | 0.5654 | 590 | 0.3391 | - | - | - | - | - |
785
+ | 0.5750 | 600 | 0.0055 | - | - | - | - | - |
786
+ | 0.5846 | 610 | 0.0264 | - | - | - | - | - |
787
+ | 0.5942 | 620 | 0.1397 | - | - | - | - | - |
788
+ | 0.6037 | 630 | 0.1114 | - | - | - | - | - |
789
+ | 0.6133 | 640 | 0.337 | - | - | - | - | - |
790
+ | 0.6229 | 650 | 0.0027 | - | - | - | - | - |
791
+ | 0.6325 | 660 | 0.1454 | - | - | - | - | - |
792
+ | 0.6421 | 670 | 0.2212 | - | - | - | - | - |
793
+ | 0.6517 | 680 | 0.0472 | - | - | - | - | - |
794
+ | 0.6612 | 690 | 0.6882 | - | - | - | - | - |
795
+ | 0.6708 | 700 | 0.0266 | - | - | - | - | - |
796
+ | 0.6804 | 710 | 1.0057 | - | - | - | - | - |
797
+ | 0.6900 | 720 | 0.1456 | - | - | - | - | - |
798
+ | 0.6996 | 730 | 0.4195 | - | - | - | - | - |
799
+ | 0.7092 | 740 | 0.0732 | - | - | - | - | - |
800
+ | 0.7187 | 750 | 0.0588 | - | - | - | - | - |
801
+ | 0.7283 | 760 | 0.0033 | - | - | - | - | - |
802
+ | 0.7379 | 770 | 0.0156 | - | - | - | - | - |
803
+ | 0.7475 | 780 | 0.0997 | - | - | - | - | - |
804
+ | 0.7571 | 790 | 0.856 | - | - | - | - | - |
805
+ | 0.7667 | 800 | 0.2394 | - | - | - | - | - |
806
+ | 0.7762 | 810 | 0.0322 | - | - | - | - | - |
807
+ | 0.7858 | 820 | 0.1821 | - | - | - | - | - |
808
+ | 0.7954 | 830 | 0.1883 | - | - | - | - | - |
809
+ | 0.8050 | 840 | 0.0994 | - | - | - | - | - |
810
+ | 0.8146 | 850 | 0.3889 | - | - | - | - | - |
811
+ | 0.8241 | 860 | 0.0221 | - | - | - | - | - |
812
+ | 0.8337 | 870 | 0.0106 | - | - | - | - | - |
813
+ | 0.8433 | 880 | 0.0031 | - | - | - | - | - |
814
+ | 0.8529 | 890 | 0.1453 | - | - | - | - | - |
815
+ | 0.8625 | 900 | 0.487 | - | - | - | - | - |
816
+ | 0.8721 | 910 | 0.2987 | - | - | - | - | - |
817
+ | 0.8816 | 920 | 0.0347 | - | - | - | - | - |
818
+ | 0.8912 | 930 | 0.2024 | - | - | - | - | - |
819
+ | 0.9008 | 940 | 0.0087 | - | - | - | - | - |
820
+ | 0.9104 | 950 | 0.3944 | - | - | - | - | - |
821
+ | 0.9200 | 960 | 0.0935 | - | - | - | - | - |
822
+ | 0.9296 | 970 | 0.2408 | - | - | - | - | - |
823
+ | 0.9391 | 980 | 0.1545 | - | - | - | - | - |
824
+ | 0.9487 | 990 | 0.1168 | - | - | - | - | - |
825
+ | 0.9583 | 1000 | 0.0051 | - | - | - | - | - |
826
+ | 0.9679 | 1010 | 0.681 | - | - | - | - | - |
827
+ | 0.9775 | 1020 | 0.0198 | - | - | - | - | - |
828
+ | 0.9871 | 1030 | 0.7243 | - | - | - | - | - |
829
+ | 0.9966 | 1040 | 0.0341 | - | - | - | - | - |
830
+ | 0.9995 | 1043 | - | 0.1608 | 0.1639 | 0.1678 | 0.1526 | 0.1610 |
831
+ | 1.0062 | 1050 | 0.001 | - | - | - | - | - |
832
+ | 1.0158 | 1060 | 0.0864 | - | - | - | - | - |
833
+ | 1.0254 | 1070 | 0.0209 | - | - | - | - | - |
834
+ | 1.0350 | 1080 | 0.2703 | - | - | - | - | - |
835
+ | 1.0446 | 1090 | 0.1857 | - | - | - | - | - |
836
+ | 1.0541 | 1100 | 0.0032 | - | - | - | - | - |
837
+ | 1.0637 | 1110 | 0.118 | - | - | - | - | - |
838
+ | 1.0733 | 1120 | 0.0029 | - | - | - | - | - |
839
+ | 1.0829 | 1130 | 0.0393 | - | - | - | - | - |
840
+ | 1.0925 | 1140 | 0.3103 | - | - | - | - | - |
841
+ | 1.1021 | 1150 | 0.0323 | - | - | - | - | - |
842
+ | 1.1116 | 1160 | 0.0925 | - | - | - | - | - |
843
+ | 1.1212 | 1170 | 0.0963 | - | - | - | - | - |
844
+ | 1.1308 | 1180 | 0.0481 | - | - | - | - | - |
845
+ | 1.1404 | 1190 | 0.0396 | - | - | - | - | - |
846
+ | 1.1500 | 1200 | 0.0033 | - | - | - | - | - |
847
+ | 1.1596 | 1210 | 0.1555 | - | - | - | - | - |
848
+ | 1.1691 | 1220 | 0.0938 | - | - | - | - | - |
849
+ | 1.1787 | 1230 | 0.1347 | - | - | - | - | - |
850
+ | 1.1883 | 1240 | 0.3057 | - | - | - | - | - |
851
+ | 1.1979 | 1250 | 0.0005 | - | - | - | - | - |
852
+ | 1.2075 | 1260 | 0.0634 | - | - | - | - | - |
853
+ | 1.2171 | 1270 | 0.0013 | - | - | - | - | - |
854
+ | 1.2266 | 1280 | 0.0012 | - | - | - | - | - |
855
+ | 1.2362 | 1290 | 0.0119 | - | - | - | - | - |
856
+ | 1.2458 | 1300 | 0.002 | - | - | - | - | - |
857
+ | 1.2554 | 1310 | 0.016 | - | - | - | - | - |
858
+ | 1.2650 | 1320 | 0.0169 | - | - | - | - | - |
859
+ | 1.2746 | 1330 | 0.0332 | - | - | - | - | - |
860
+ | 1.2841 | 1340 | 0.0076 | - | - | - | - | - |
861
+ | 1.2937 | 1350 | 0.0029 | - | - | - | - | - |
862
+ | 1.3033 | 1360 | 0.0011 | - | - | - | - | - |
863
+ | 1.3129 | 1370 | 0.0477 | - | - | - | - | - |
864
+ | 1.3225 | 1380 | 0.014 | - | - | - | - | - |
865
+ | 1.3321 | 1390 | 0.0002 | - | - | - | - | - |
866
+ | 1.3416 | 1400 | 0.012 | - | - | - | - | - |
867
+ | 1.3512 | 1410 | 0.0175 | - | - | - | - | - |
868
+ | 1.3608 | 1420 | 0.0088 | - | - | - | - | - |
869
+ | 1.3704 | 1430 | 0.0022 | - | - | - | - | - |
870
+ | 1.3800 | 1440 | 0.0007 | - | - | - | - | - |
871
+ | 1.3896 | 1450 | 0.0098 | - | - | - | - | - |
872
+ | 1.3991 | 1460 | 0.0003 | - | - | - | - | - |
873
+ | 1.4087 | 1470 | 0.0804 | - | - | - | - | - |
874
+ | 1.4183 | 1480 | 0.0055 | - | - | - | - | - |
875
+ | 1.4279 | 1490 | 0.1131 | - | - | - | - | - |
876
+ | 1.4375 | 1500 | 0.0018 | - | - | - | - | - |
877
+ | 1.4471 | 1510 | 0.0002 | - | - | - | - | - |
878
+ | 1.4566 | 1520 | 0.0143 | - | - | - | - | - |
879
+ | 1.4662 | 1530 | 0.0876 | - | - | - | - | - |
880
+ | 1.4758 | 1540 | 0.003 | - | - | - | - | - |
881
+ | 1.4854 | 1550 | 0.0087 | - | - | - | - | - |
882
+ | 1.4950 | 1560 | 0.0005 | - | - | - | - | - |
883
+ | 1.5046 | 1570 | 0.0002 | - | - | - | - | - |
884
+ | 1.5141 | 1580 | 0.1614 | - | - | - | - | - |
885
+ | 1.5237 | 1590 | 0.0017 | - | - | - | - | - |
886
+ | 1.5333 | 1600 | 0.0013 | - | - | - | - | - |
887
+ | 1.5429 | 1610 | 0.0041 | - | - | - | - | - |
888
+ | 1.5525 | 1620 | 0.0021 | - | - | - | - | - |
889
+ | 1.5621 | 1630 | 0.1113 | - | - | - | - | - |
890
+ | 1.5716 | 1640 | 0.0003 | - | - | - | - | - |
891
+ | 1.5812 | 1650 | 0.0003 | - | - | - | - | - |
892
+ | 1.5908 | 1660 | 0.0018 | - | - | - | - | - |
893
+ | 1.6004 | 1670 | 0.0004 | - | - | - | - | - |
894
+ | 1.6100 | 1680 | 0.0003 | - | - | - | - | - |
895
+ | 1.6195 | 1690 | 0.0017 | - | - | - | - | - |
896
+ | 1.6291 | 1700 | 0.0023 | - | - | - | - | - |
897
+ | 1.6387 | 1710 | 0.0167 | - | - | - | - | - |
898
+ | 1.6483 | 1720 | 0.0023 | - | - | - | - | - |
899
+ | 1.6579 | 1730 | 0.0095 | - | - | - | - | - |
900
+ | 1.6675 | 1740 | 0.0005 | - | - | - | - | - |
901
+ | 1.6770 | 1750 | 0.0014 | - | - | - | - | - |
902
+ | 1.6866 | 1760 | 0.0007 | - | - | - | - | - |
903
+ | 1.6962 | 1770 | 0.0014 | - | - | - | - | - |
904
+ | 1.7058 | 1780 | 0.0 | - | - | - | - | - |
905
+ | 1.7154 | 1790 | 0.0016 | - | - | - | - | - |
906
+ | 1.7250 | 1800 | 0.0004 | - | - | - | - | - |
907
+ | 1.7345 | 1810 | 0.0007 | - | - | - | - | - |
908
+ | 1.7441 | 1820 | 0.3356 | - | - | - | - | - |
909
+ | 1.7537 | 1830 | 0.001 | - | - | - | - | - |
910
+ | 1.7633 | 1840 | 0.0436 | - | - | - | - | - |
911
+ | 1.7729 | 1850 | 0.0839 | - | - | - | - | - |
912
+ | 1.7825 | 1860 | 0.0019 | - | - | - | - | - |
913
+ | 1.7920 | 1870 | 0.0406 | - | - | - | - | - |
914
+ | 1.8016 | 1880 | 0.0496 | - | - | - | - | - |
915
+ | 1.8112 | 1890 | 0.0164 | - | - | - | - | - |
916
+ | 1.8208 | 1900 | 0.0118 | - | - | - | - | - |
917
+ | 1.8304 | 1910 | 0.001 | - | - | - | - | - |
918
+ | 1.8400 | 1920 | 0.0004 | - | - | - | - | - |
919
+ | 1.8495 | 1930 | 0.002 | - | - | - | - | - |
920
+ | 1.8591 | 1940 | 0.0051 | - | - | - | - | - |
921
+ | 1.8687 | 1950 | 0.0624 | - | - | - | - | - |
922
+ | 1.8783 | 1960 | 0.0033 | - | - | - | - | - |
923
+ | 1.8879 | 1970 | 0.0001 | - | - | - | - | - |
924
+ | 1.8975 | 1980 | 0.1594 | - | - | - | - | - |
925
+ | 1.9070 | 1990 | 0.007 | - | - | - | - | - |
926
+ | 1.9166 | 2000 | 0.0002 | - | - | - | - | - |
927
+ | 1.9262 | 2010 | 0.0012 | - | - | - | - | - |
928
+ | 1.9358 | 2020 | 0.0011 | - | - | - | - | - |
929
+ | 1.9454 | 2030 | 0.0264 | - | - | - | - | - |
930
+ | 1.9550 | 2040 | 0.0004 | - | - | - | - | - |
931
+ | 1.9645 | 2050 | 0.008 | - | - | - | - | - |
932
+ | 1.9741 | 2060 | 0.1025 | - | - | - | - | - |
933
+ | 1.9837 | 2070 | 0.0745 | - | - | - | - | - |
934
+ | 1.9933 | 2080 | 0.006 | - | - | - | - | - |
935
+ | 2.0 | 2087 | - | 0.1609 | 0.1644 | 0.1708 | 0.1499 | 0.1696 |
936
+ | 2.0029 | 2090 | 0.001 | - | - | - | - | - |
937
+ | 2.0125 | 2100 | 0.0004 | - | - | - | - | - |
938
+ | 2.0220 | 2110 | 0.0003 | - | - | - | - | - |
939
+ | 2.0316 | 2120 | 0.0001 | - | - | - | - | - |
940
+ | 2.0412 | 2130 | 0.0003 | - | - | - | - | - |
941
+ | 2.0508 | 2140 | 0.0002 | - | - | - | - | - |
942
+ | 2.0604 | 2150 | 0.0006 | - | - | - | - | - |
943
+ | 2.0700 | 2160 | 0.04 | - | - | - | - | - |
944
+ | 2.0795 | 2170 | 0.0055 | - | - | - | - | - |
945
+ | 2.0891 | 2180 | 0.1454 | - | - | - | - | - |
946
+ | 2.0987 | 2190 | 0.0029 | - | - | - | - | - |
947
+ | 2.1083 | 2200 | 0.0006 | - | - | - | - | - |
948
+ | 2.1179 | 2210 | 0.0001 | - | - | - | - | - |
949
+ | 2.1275 | 2220 | 0.0129 | - | - | - | - | - |
950
+ | 2.1370 | 2230 | 0.0001 | - | - | - | - | - |
951
+ | 2.1466 | 2240 | 0.0003 | - | - | - | - | - |
952
+ | 2.1562 | 2250 | 0.4145 | - | - | - | - | - |
953
+ | 2.1658 | 2260 | 0.0048 | - | - | - | - | - |
954
+ | 2.1754 | 2270 | 0.0706 | - | - | - | - | - |
955
+ | 2.1850 | 2280 | 0.0026 | - | - | - | - | - |
956
+ | 2.1945 | 2290 | 0.008 | - | - | - | - | - |
957
+ | 2.2041 | 2300 | 0.0051 | - | - | - | - | - |
958
+ | 2.2137 | 2310 | 0.0307 | - | - | - | - | - |
959
+ | 2.2233 | 2320 | 0.0017 | - | - | - | - | - |
960
+ | 2.2329 | 2330 | 0.0005 | - | - | - | - | - |
961
+ | 2.2425 | 2340 | 0.0001 | - | - | - | - | - |
962
+ | 2.2520 | 2350 | 0.0001 | - | - | - | - | - |
963
+ | 2.2616 | 2360 | 0.0001 | - | - | - | - | - |
964
+ | 2.2712 | 2370 | 0.0461 | - | - | - | - | - |
965
+ | 2.2808 | 2380 | 0.0001 | - | - | - | - | - |
966
+ | 2.2904 | 2390 | 0.0003 | - | - | - | - | - |
967
+ | 2.3000 | 2400 | 0.001 | - | - | - | - | - |
968
+ | 2.3095 | 2410 | 0.0002 | - | - | - | - | - |
969
+ | 2.3191 | 2420 | 0.1568 | - | - | - | - | - |
970
+ | 2.3287 | 2430 | 0.0001 | - | - | - | - | - |
971
+ | 2.3383 | 2440 | 0.0005 | - | - | - | - | - |
972
+ | 2.3479 | 2450 | 0.0072 | - | - | - | - | - |
973
+ | 2.3575 | 2460 | 0.014 | - | - | - | - | - |
974
+ | 2.3670 | 2470 | 0.0003 | - | - | - | - | - |
975
+ | 2.3766 | 2480 | 0.0 | - | - | - | - | - |
976
+ | 2.3862 | 2490 | 0.0001 | - | - | - | - | - |
977
+ | 2.3958 | 2500 | 0.0008 | - | - | - | - | - |
978
+ | 2.4054 | 2510 | 0.0 | - | - | - | - | - |
979
+ | 2.4149 | 2520 | 0.0002 | - | - | - | - | - |
980
+ | 2.4245 | 2530 | 0.061 | - | - | - | - | - |
981
+ | 2.4341 | 2540 | 0.0005 | - | - | - | - | - |
982
+ | 2.4437 | 2550 | 0.0 | - | - | - | - | - |
983
+ | 2.4533 | 2560 | 0.0003 | - | - | - | - | - |
984
+ | 2.4629 | 2570 | 0.0095 | - | - | - | - | - |
985
+ | 2.4724 | 2580 | 0.0002 | - | - | - | - | - |
986
+ | 2.4820 | 2590 | 0.0 | - | - | - | - | - |
987
+ | 2.4916 | 2600 | 0.0003 | - | - | - | - | - |
988
+ | 2.5012 | 2610 | 0.0002 | - | - | - | - | - |
989
+ | 2.5108 | 2620 | 0.0035 | - | - | - | - | - |
990
+ | 2.5204 | 2630 | 0.0001 | - | - | - | - | - |
991
+ | 2.5299 | 2640 | 0.0 | - | - | - | - | - |
992
+ | 2.5395 | 2650 | 0.0017 | - | - | - | - | - |
993
+ | 2.5491 | 2660 | 0.0 | - | - | - | - | - |
994
+ | 2.5587 | 2670 | 0.0066 | - | - | - | - | - |
995
+ | 2.5683 | 2680 | 0.0004 | - | - | - | - | - |
996
+ | 2.5779 | 2690 | 0.0001 | - | - | - | - | - |
997
+ | 2.5874 | 2700 | 0.0 | - | - | - | - | - |
998
+ | 2.5970 | 2710 | 0.0 | - | - | - | - | - |
999
+ | 2.6066 | 2720 | 0.131 | - | - | - | - | - |
1000
+ | 2.6162 | 2730 | 0.0001 | - | - | - | - | - |
1001
+ | 2.6258 | 2740 | 0.0001 | - | - | - | - | - |
1002
+ | 2.6354 | 2750 | 0.0001 | - | - | - | - | - |
1003
+ | 2.6449 | 2760 | 0.0 | - | - | - | - | - |
1004
+ | 2.6545 | 2770 | 0.0003 | - | - | - | - | - |
1005
+ | 2.6641 | 2780 | 0.0095 | - | - | - | - | - |
1006
+ | 2.6737 | 2790 | 0.0 | - | - | - | - | - |
1007
+ | 2.6833 | 2800 | 0.0003 | - | - | - | - | - |
1008
+ | 2.6929 | 2810 | 0.0001 | - | - | - | - | - |
1009
+ | 2.7024 | 2820 | 0.0002 | - | - | - | - | - |
1010
+ | 2.7120 | 2830 | 0.0007 | - | - | - | - | - |
1011
+ | 2.7216 | 2840 | 0.0008 | - | - | - | - | - |
1012
+ | 2.7312 | 2850 | 0.0 | - | - | - | - | - |
1013
+ | 2.7408 | 2860 | 0.0002 | - | - | - | - | - |
1014
+ | 2.7504 | 2870 | 0.0003 | - | - | - | - | - |
1015
+ | 2.7599 | 2880 | 0.0062 | - | - | - | - | - |
1016
+ | 2.7695 | 2890 | 0.0415 | - | - | - | - | - |
1017
+ | 2.7791 | 2900 | 0.0002 | - | - | - | - | - |
1018
+ | 2.7887 | 2910 | 0.0024 | - | - | - | - | - |
1019
+ | 2.7983 | 2920 | 0.0022 | - | - | - | - | - |
1020
+ | 2.8079 | 2930 | 0.0014 | - | - | - | - | - |
1021
+ | 2.8174 | 2940 | 0.1301 | - | - | - | - | - |
1022
+ | 2.8270 | 2950 | 0.0 | - | - | - | - | - |
1023
+ | 2.8366 | 2960 | 0.0 | - | - | - | - | - |
1024
+ | 2.8462 | 2970 | 0.0 | - | - | - | - | - |
1025
+ | 2.8558 | 2980 | 0.0006 | - | - | - | - | - |
1026
+ | 2.8654 | 2990 | 0.0 | - | - | - | - | - |
1027
+ | 2.8749 | 3000 | 0.0235 | - | - | - | - | - |
1028
+ | 2.8845 | 3010 | 0.0001 | - | - | - | - | - |
1029
+ | 2.8941 | 3020 | 0.0285 | - | - | - | - | - |
1030
+ | 2.9037 | 3030 | 0.0 | - | - | - | - | - |
1031
+ | 2.9133 | 3040 | 0.0002 | - | - | - | - | - |
1032
+ | 2.9229 | 3050 | 0.0 | - | - | - | - | - |
1033
+ | 2.9324 | 3060 | 0.0005 | - | - | - | - | - |
1034
+ | 2.9420 | 3070 | 0.0001 | - | - | - | - | - |
1035
+ | 2.9516 | 3080 | 0.0011 | - | - | - | - | - |
1036
+ | 2.9612 | 3090 | 0.0 | - | - | - | - | - |
1037
+ | 2.9708 | 3100 | 0.0001 | - | - | - | - | - |
1038
+ | 2.9804 | 3110 | 0.0046 | - | - | - | - | - |
1039
+ | 2.9899 | 3120 | 0.0001 | - | - | - | - | - |
1040
+ | **2.9995** | **3130** | **0.0005** | **0.1622** | **0.1647** | **0.1635** | **0.1564** | **0.1617** |
1041
+ | 3.0091 | 3140 | 0.0 | - | - | - | - | - |
1042
+ | 3.0187 | 3150 | 0.0 | - | - | - | - | - |
1043
+ | 3.0283 | 3160 | 0.0 | - | - | - | - | - |
1044
+ | 3.0379 | 3170 | 0.0002 | - | - | - | - | - |
1045
+ | 3.0474 | 3180 | 0.0004 | - | - | - | - | - |
1046
+ | 3.0570 | 3190 | 0.1022 | - | - | - | - | - |
1047
+ | 3.0666 | 3200 | 0.0012 | - | - | - | - | - |
1048
+ | 3.0762 | 3210 | 0.0001 | - | - | - | - | - |
1049
+ | 3.0858 | 3220 | 0.0677 | - | - | - | - | - |
1050
+ | 3.0954 | 3230 | 0.0 | - | - | - | - | - |
1051
+ | 3.1049 | 3240 | 0.0002 | - | - | - | - | - |
1052
+ | 3.1145 | 3250 | 0.0001 | - | - | - | - | - |
1053
+ | 3.1241 | 3260 | 0.0005 | - | - | - | - | - |
1054
+ | 3.1337 | 3270 | 0.0002 | - | - | - | - | - |
1055
+ | 3.1433 | 3280 | 0.0 | - | - | - | - | - |
1056
+ | 3.1529 | 3290 | 0.0021 | - | - | - | - | - |
1057
+ | 3.1624 | 3300 | 0.0001 | - | - | - | - | - |
1058
+ | 3.1720 | 3310 | 0.0077 | - | - | - | - | - |
1059
+ | 3.1816 | 3320 | 0.0001 | - | - | - | - | - |
1060
+ | 3.1912 | 3330 | 0.1324 | - | - | - | - | - |
1061
+ | 3.2008 | 3340 | 0.0 | - | - | - | - | - |
1062
+ | 3.2103 | 3350 | 0.1278 | - | - | - | - | - |
1063
+ | 3.2199 | 3360 | 0.0001 | - | - | - | - | - |
1064
+ | 3.2295 | 3370 | 0.0 | - | - | - | - | - |
1065
+ | 3.2391 | 3380 | 0.0001 | - | - | - | - | - |
1066
+ | 3.2487 | 3390 | 0.0001 | - | - | - | - | - |
1067
+ | 3.2583 | 3400 | 0.0 | - | - | - | - | - |
1068
+ | 3.2678 | 3410 | 0.0001 | - | - | - | - | - |
1069
+ | 3.2774 | 3420 | 0.0 | - | - | - | - | - |
1070
+ | 3.2870 | 3430 | 0.0001 | - | - | - | - | - |
1071
+ | 3.2966 | 3440 | 0.0001 | - | - | - | - | - |
1072
+ | 3.3062 | 3450 | 0.0001 | - | - | - | - | - |
1073
+ | 3.3158 | 3460 | 0.0263 | - | - | - | - | - |
1074
+ | 3.3253 | 3470 | 0.0001 | - | - | - | - | - |
1075
+ | 3.3349 | 3480 | 0.0002 | - | - | - | - | - |
1076
+ | 3.3445 | 3490 | 0.0003 | - | - | - | - | - |
1077
+ | 3.3541 | 3500 | 0.0 | - | - | - | - | - |
1078
+ | 3.3637 | 3510 | 0.0 | - | - | - | - | - |
1079
+ | 3.3733 | 3520 | 0.0 | - | - | - | - | - |
1080
+ | 3.3828 | 3530 | 0.0002 | - | - | - | - | - |
1081
+ | 3.3924 | 3540 | 0.0001 | - | - | - | - | - |
1082
+ | 3.4020 | 3550 | 0.0 | - | - | - | - | - |
1083
+ | 3.4116 | 3560 | 0.0001 | - | - | - | - | - |
1084
+ | 3.4212 | 3570 | 0.0001 | - | - | - | - | - |
1085
+ | 3.4308 | 3580 | 0.0122 | - | - | - | - | - |
1086
+ | 3.4403 | 3590 | 0.0 | - | - | - | - | - |
1087
+ | 3.4499 | 3600 | 0.0001 | - | - | - | - | - |
1088
+ | 3.4595 | 3610 | 0.0003 | - | - | - | - | - |
1089
+ | 3.4691 | 3620 | 0.0 | - | - | - | - | - |
1090
+ | 3.4787 | 3630 | 0.0 | - | - | - | - | - |
1091
+ | 3.4883 | 3640 | 0.0001 | - | - | - | - | - |
1092
+ | 3.4978 | 3650 | 0.0 | - | - | - | - | - |
1093
+ | 3.5074 | 3660 | 0.0002 | - | - | - | - | - |
1094
+ | 3.5170 | 3670 | 0.0004 | - | - | - | - | - |
1095
+ | 3.5266 | 3680 | 0.0003 | - | - | - | - | - |
1096
+ | 3.5362 | 3690 | 0.0004 | - | - | - | - | - |
1097
+ | 3.5458 | 3700 | 0.0 | - | - | - | - | - |
1098
+ | 3.5553 | 3710 | 0.0001 | - | - | - | - | - |
1099
+ | 3.5649 | 3720 | 0.0001 | - | - | - | - | - |
1100
+ | 3.5745 | 3730 | 0.0 | - | - | - | - | - |
1101
+ | 3.5841 | 3740 | 0.0001 | - | - | - | - | - |
1102
+ | 3.5937 | 3750 | 0.0003 | - | - | - | - | - |
1103
+ | 3.6033 | 3760 | 0.0 | - | - | - | - | - |
1104
+ | 3.6128 | 3770 | 0.0002 | - | - | - | - | - |
1105
+ | 3.6224 | 3780 | 0.0 | - | - | - | - | - |
1106
+ | 3.6320 | 3790 | 0.0 | - | - | - | - | - |
1107
+ | 3.6416 | 3800 | 0.0 | - | - | - | - | - |
1108
+ | 3.6512 | 3810 | 0.0 | - | - | - | - | - |
1109
+ | 3.6608 | 3820 | 0.0 | - | - | - | - | - |
1110
+ | 3.6703 | 3830 | 0.0 | - | - | - | - | - |
1111
+ | 3.6799 | 3840 | 0.0001 | - | - | - | - | - |
1112
+ | 3.6895 | 3850 | 0.0001 | - | - | - | - | - |
1113
+ | 3.6991 | 3860 | 0.0002 | - | - | - | - | - |
1114
+ | 3.7087 | 3870 | 0.0 | - | - | - | - | - |
1115
+ | 3.7183 | 3880 | 0.0001 | - | - | - | - | - |
1116
+ | 3.7278 | 3890 | 0.0002 | - | - | - | - | - |
1117
+ | 3.7374 | 3900 | 0.0001 | - | - | - | - | - |
1118
+ | 3.7470 | 3910 | 0.0003 | - | - | - | - | - |
1119
+ | 3.7566 | 3920 | 0.0003 | - | - | - | - | - |
1120
+ | 3.7662 | 3930 | 0.0021 | - | - | - | - | - |
1121
+ | 3.7758 | 3940 | 0.0002 | - | - | - | - | - |
1122
+ | 3.7853 | 3950 | 0.0001 | - | - | - | - | - |
1123
+ | 3.7949 | 3960 | 0.0001 | - | - | - | - | - |
1124
+ | 3.8045 | 3970 | 0.0001 | - | - | - | - | - |
1125
+ | 3.8141 | 3980 | 0.0002 | - | - | - | - | - |
1126
+ | 3.8237 | 3990 | 0.0001 | - | - | - | - | - |
1127
+ | 3.8333 | 4000 | 0.0001 | - | - | - | - | - |
1128
+ | 3.8428 | 4010 | 0.0001 | - | - | - | - | - |
1129
+ | 3.8524 | 4020 | 0.0001 | - | - | - | - | - |
1130
+ | 3.8620 | 4030 | 0.0 | - | - | - | - | - |
1131
+ | 3.8716 | 4040 | 0.0003 | - | - | - | - | - |
1132
+ | 3.8812 | 4050 | 0.0 | - | - | - | - | - |
1133
+ | 3.8908 | 4060 | 0.002 | - | - | - | - | - |
1134
+ | 3.9003 | 4070 | 0.0 | - | - | - | - | - |
1135
+ | 3.9099 | 4080 | 0.0 | - | - | - | - | - |
1136
+ | 3.9195 | 4090 | 0.0001 | - | - | - | - | - |
1137
+ | 3.9291 | 4100 | 0.0 | - | - | - | - | - |
1138
+ | 3.9387 | 4110 | 0.0 | - | - | - | - | - |
1139
+ | 3.9483 | 4120 | 0.0 | - | - | - | - | - |
1140
+ | 3.9578 | 4130 | 0.0 | - | - | - | - | - |
1141
+ | 3.9674 | 4140 | 0.0 | - | - | - | - | - |
1142
+ | 3.9770 | 4150 | 0.0 | - | - | - | - | - |
1143
+ | 3.9866 | 4160 | 0.0004 | - | - | - | - | - |
1144
+ | 3.9962 | 4170 | 0.0 | - | - | - | - | - |
1145
+ | 3.9981 | 4172 | - | 0.1592 | 0.1658 | 0.1660 | 0.1580 | 0.1671 |
1146
+
1147
+ * The bold row denotes the saved checkpoint.
1148
+ </details>
1149
+
1150
+ ### Framework Versions
1151
+ - Python: 3.10.12
1152
+ - Sentence Transformers: 3.0.1
1153
+ - Transformers: 4.42.4
1154
+ - PyTorch: 2.3.1+cu121
1155
+ - Accelerate: 0.34.0.dev0
1156
+ - Datasets: 2.21.0
1157
+ - Tokenizers: 0.19.1
1158
+
1159
+ ## Citation
1160
+
1161
+ ### BibTeX
1162
+
1163
+ #### Sentence Transformers
1164
+ ```bibtex
1165
+ @inproceedings{reimers-2019-sentence-bert,
1166
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1167
+ author = "Reimers, Nils and Gurevych, Iryna",
1168
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1169
+ month = "11",
1170
+ year = "2019",
1171
+ publisher = "Association for Computational Linguistics",
1172
+ url = "https://arxiv.org/abs/1908.10084",
1173
+ }
1174
+ ```
1175
+
1176
+ #### MatryoshkaLoss
1177
+ ```bibtex
1178
+ @misc{kusupati2024matryoshka,
1179
+ title={Matryoshka Representation Learning},
1180
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1181
+ year={2024},
1182
+ eprint={2205.13147},
1183
+ archivePrefix={arXiv},
1184
+ primaryClass={cs.LG}
1185
+ }
1186
+ ```
1187
+
1188
+ #### MultipleNegativesRankingLoss
1189
+ ```bibtex
1190
+ @misc{henderson2017efficient,
1191
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1192
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1193
+ year={2017},
1194
+ eprint={1705.00652},
1195
+ archivePrefix={arXiv},
1196
+ primaryClass={cs.CL}
1197
+ }
1198
+ ```
1199
+
1200
+ <!--
1201
+ ## Glossary
1202
+
1203
+ *Clearly define terms in order to be accessible across audiences.*
1204
+ -->
1205
+
1206
+ <!--
1207
+ ## Model Card Authors
1208
+
1209
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1210
+ -->
1211
+
1212
+ <!--
1213
+ ## Model Card Contact
1214
+
1215
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1216
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b796a12ea0352a66b71c2ed1b859eb6c7ebd5cb4f2fcd3cd23eae415157ac2fa
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }