verizon_model1 / README.md
TieIncred's picture
update model card README.md
a6a9403
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: verizon_model1
    results: []

verizon_model1

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0242
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.458 1.0 8 1.1774 0.7451 0.6817
1.1574 2.0 16 0.8376 0.7843 0.6934
0.8281 3.0 24 0.6155 0.8627 0.8055
0.6272 4.0 32 0.4462 0.8824 0.8493
0.4532 5.0 40 0.3344 0.9216 0.9111
0.3607 6.0 48 0.2535 1.0 1.0
0.2153 7.0 56 0.1961 0.9804 0.9800
0.1704 8.0 64 0.1489 1.0 1.0
0.1238 9.0 72 0.1116 1.0 1.0
0.0998 10.0 80 0.0841 1.0 1.0
0.097 11.0 88 0.0642 1.0 1.0
0.0751 12.0 96 0.0510 1.0 1.0
0.0583 13.0 104 0.0421 1.0 1.0
0.0422 14.0 112 0.0350 1.0 1.0
0.037 15.0 120 0.0307 1.0 1.0
0.0354 16.0 128 0.0282 1.0 1.0
0.0336 17.0 136 0.0265 1.0 1.0
0.0316 18.0 144 0.0252 1.0 1.0
0.0341 19.0 152 0.0244 1.0 1.0
0.027 20.0 160 0.0242 1.0 1.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2