File size: 2,735 Bytes
b3ce65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a9403
b3ce65b
a6a9403
 
 
b3ce65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a9403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ce65b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: verizon_model1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# verizon_model1

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0242
- Accuracy: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.458         | 1.0   | 8    | 1.1774          | 0.7451   | 0.6817 |
| 1.1574        | 2.0   | 16   | 0.8376          | 0.7843   | 0.6934 |
| 0.8281        | 3.0   | 24   | 0.6155          | 0.8627   | 0.8055 |
| 0.6272        | 4.0   | 32   | 0.4462          | 0.8824   | 0.8493 |
| 0.4532        | 5.0   | 40   | 0.3344          | 0.9216   | 0.9111 |
| 0.3607        | 6.0   | 48   | 0.2535          | 1.0      | 1.0    |
| 0.2153        | 7.0   | 56   | 0.1961          | 0.9804   | 0.9800 |
| 0.1704        | 8.0   | 64   | 0.1489          | 1.0      | 1.0    |
| 0.1238        | 9.0   | 72   | 0.1116          | 1.0      | 1.0    |
| 0.0998        | 10.0  | 80   | 0.0841          | 1.0      | 1.0    |
| 0.097         | 11.0  | 88   | 0.0642          | 1.0      | 1.0    |
| 0.0751        | 12.0  | 96   | 0.0510          | 1.0      | 1.0    |
| 0.0583        | 13.0  | 104  | 0.0421          | 1.0      | 1.0    |
| 0.0422        | 14.0  | 112  | 0.0350          | 1.0      | 1.0    |
| 0.037         | 15.0  | 120  | 0.0307          | 1.0      | 1.0    |
| 0.0354        | 16.0  | 128  | 0.0282          | 1.0      | 1.0    |
| 0.0336        | 17.0  | 136  | 0.0265          | 1.0      | 1.0    |
| 0.0316        | 18.0  | 144  | 0.0252          | 1.0      | 1.0    |
| 0.0341        | 19.0  | 152  | 0.0244          | 1.0      | 1.0    |
| 0.027         | 20.0  | 160  | 0.0242          | 1.0      | 1.0    |


### Framework versions

- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2