Edit model card

verizon_model1

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0242
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.458 1.0 8 1.1774 0.7451 0.6817
1.1574 2.0 16 0.8376 0.7843 0.6934
0.8281 3.0 24 0.6155 0.8627 0.8055
0.6272 4.0 32 0.4462 0.8824 0.8493
0.4532 5.0 40 0.3344 0.9216 0.9111
0.3607 6.0 48 0.2535 1.0 1.0
0.2153 7.0 56 0.1961 0.9804 0.9800
0.1704 8.0 64 0.1489 1.0 1.0
0.1238 9.0 72 0.1116 1.0 1.0
0.0998 10.0 80 0.0841 1.0 1.0
0.097 11.0 88 0.0642 1.0 1.0
0.0751 12.0 96 0.0510 1.0 1.0
0.0583 13.0 104 0.0421 1.0 1.0
0.0422 14.0 112 0.0350 1.0 1.0
0.037 15.0 120 0.0307 1.0 1.0
0.0354 16.0 128 0.0282 1.0 1.0
0.0336 17.0 136 0.0265 1.0 1.0
0.0316 18.0 144 0.0252 1.0 1.0
0.0341 19.0 152 0.0244 1.0 1.0
0.027 20.0 160 0.0242 1.0 1.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.