TieIncred commited on
Commit
b3ce65b
1 Parent(s): bd1272e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: verizon_model1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # verizon_model1
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0752
21
+ - Accuracy: 0.9804
22
+ - F1: 0.9797
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 64
43
+ - eval_batch_size: 64
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 20
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | 1.5222 | 1.0 | 8 | 1.4173 | 0.5686 | 0.5681 |
54
+ | 1.2748 | 2.0 | 16 | 1.1744 | 0.7647 | 0.6850 |
55
+ | 1.0552 | 3.0 | 24 | 0.9130 | 0.7843 | 0.7001 |
56
+ | 0.8588 | 4.0 | 32 | 0.6877 | 0.8824 | 0.8290 |
57
+ | 0.6473 | 5.0 | 40 | 0.5120 | 0.8824 | 0.8291 |
58
+ | 0.5048 | 6.0 | 48 | 0.3791 | 0.9216 | 0.9049 |
59
+ | 0.3041 | 7.0 | 56 | 0.2843 | 0.9804 | 0.9797 |
60
+ | 0.2355 | 8.0 | 64 | 0.2135 | 0.9804 | 0.9797 |
61
+ | 0.2168 | 9.0 | 72 | 0.1657 | 0.9804 | 0.9797 |
62
+ | 0.1318 | 10.0 | 80 | 0.1408 | 0.9804 | 0.9797 |
63
+ | 0.1205 | 11.0 | 88 | 0.1167 | 0.9804 | 0.9797 |
64
+ | 0.0858 | 12.0 | 96 | 0.1037 | 0.9804 | 0.9797 |
65
+ | 0.0968 | 13.0 | 104 | 0.0954 | 0.9804 | 0.9797 |
66
+ | 0.0658 | 14.0 | 112 | 0.0894 | 0.9804 | 0.9797 |
67
+ | 0.0655 | 15.0 | 120 | 0.0828 | 0.9804 | 0.9797 |
68
+ | 0.0581 | 16.0 | 128 | 0.0794 | 0.9804 | 0.9797 |
69
+ | 0.0612 | 17.0 | 136 | 0.0786 | 0.9804 | 0.9797 |
70
+ | 0.059 | 18.0 | 144 | 0.0767 | 0.9804 | 0.9797 |
71
+ | 0.0512 | 19.0 | 152 | 0.0756 | 0.9804 | 0.9797 |
72
+ | 0.0479 | 20.0 | 160 | 0.0752 | 0.9804 | 0.9797 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.16.2
78
+ - Pytorch 2.1.0+cu121
79
+ - Datasets 2.18.0
80
+ - Tokenizers 0.15.2