|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: russian-BERT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# russian-BERT |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0126 |
|
- Accuracy: 0.8813 |
|
- Precision: 0.8813 |
|
- Recall: 0.8813 |
|
- Micro-avg-recall: 0.8813 |
|
- Micro-avg-precision: 0.8813 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| |
|
| 0.0795 | 1.0 | 750 | 0.8896 | 0.8637 | 0.8665 | 0.8637 | 0.8637 | 0.8637 | |
|
| 0.073 | 2.0 | 1500 | 0.8294 | 0.8633 | 0.8640 | 0.8633 | 0.8633 | 0.8633 | |
|
| 0.0001 | 3.0 | 2250 | 0.9873 | 0.8757 | 0.8779 | 0.8757 | 0.8757 | 0.8757 | |
|
| 0.0432 | 4.0 | 3000 | 0.9801 | 0.8813 | 0.8817 | 0.8813 | 0.8813 | 0.8813 | |
|
| 0.0002 | 5.0 | 3750 | 1.0126 | 0.8813 | 0.8813 | 0.8813 | 0.8813 | 0.8813 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|