File size: 2,163 Bytes
36d365e
 
31932e6
4dd6cb4
4bb1fd7
 
31932e6
 
 
 
 
 
 
36d365e
 
31932e6
 
36d365e
31932e6
36d365e
4dd6cb4
31932e6
65375ae
 
 
 
 
 
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
36d365e
31932e6
 
 
 
 
 
 
4bb1fd7
36d365e
31932e6
36d365e
31932e6
 
65375ae
 
 
 
 
36d365e
 
31932e6
36d365e
31932e6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: russian-BERT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# russian-BERT

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0126
- Accuracy: 0.8813
- Precision: 0.8813
- Recall: 0.8813
- Micro-avg-recall: 0.8813
- Micro-avg-precision: 0.8813

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
| 0.0795        | 1.0   | 750  | 0.8896          | 0.8637   | 0.8665    | 0.8637 | 0.8637           | 0.8637              |
| 0.073         | 2.0   | 1500 | 0.8294          | 0.8633   | 0.8640    | 0.8633 | 0.8633           | 0.8633              |
| 0.0001        | 3.0   | 2250 | 0.9873          | 0.8757   | 0.8779    | 0.8757 | 0.8757           | 0.8757              |
| 0.0432        | 4.0   | 3000 | 0.9801          | 0.8813   | 0.8817    | 0.8813 | 0.8813           | 0.8813              |
| 0.0002        | 5.0   | 3750 | 1.0126          | 0.8813   | 0.8813    | 0.8813 | 0.8813           | 0.8813              |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1