File size: 2,163 Bytes
36d365e 31932e6 4dd6cb4 4bb1fd7 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 4dd6cb4 31932e6 65375ae 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 36d365e 31932e6 4bb1fd7 36d365e 31932e6 36d365e 31932e6 65375ae 36d365e 31932e6 36d365e 31932e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: russian-BERT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# russian-BERT
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0126
- Accuracy: 0.8813
- Precision: 0.8813
- Recall: 0.8813
- Micro-avg-recall: 0.8813
- Micro-avg-precision: 0.8813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
| 0.0795 | 1.0 | 750 | 0.8896 | 0.8637 | 0.8665 | 0.8637 | 0.8637 | 0.8637 |
| 0.073 | 2.0 | 1500 | 0.8294 | 0.8633 | 0.8640 | 0.8633 | 0.8633 | 0.8633 |
| 0.0001 | 3.0 | 2250 | 0.9873 | 0.8757 | 0.8779 | 0.8757 | 0.8757 | 0.8757 |
| 0.0432 | 4.0 | 3000 | 0.9801 | 0.8813 | 0.8817 | 0.8813 | 0.8813 | 0.8813 |
| 0.0002 | 5.0 | 3750 | 1.0126 | 0.8813 | 0.8813 | 0.8813 | 0.8813 | 0.8813 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1
|