--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: russian-BERT results: [] --- # russian-BERT This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0126 - Accuracy: 0.8813 - Precision: 0.8813 - Recall: 0.8813 - Micro-avg-recall: 0.8813 - Micro-avg-precision: 0.8813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| | 0.0795 | 1.0 | 750 | 0.8896 | 0.8637 | 0.8665 | 0.8637 | 0.8637 | 0.8637 | | 0.073 | 2.0 | 1500 | 0.8294 | 0.8633 | 0.8640 | 0.8633 | 0.8633 | 0.8633 | | 0.0001 | 3.0 | 2250 | 0.9873 | 0.8757 | 0.8779 | 0.8757 | 0.8757 | 0.8757 | | 0.0432 | 4.0 | 3000 | 0.9801 | 0.8813 | 0.8817 | 0.8813 | 0.8813 | 0.8813 | | 0.0002 | 5.0 | 3750 | 1.0126 | 0.8813 | 0.8813 | 0.8813 | 0.8813 | 0.8813 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1