smart-tab-embedding / README.md
vazish's picture
add fine-tuned model
ddd1077 unverified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises
sentences:
- PulseAudio - Ubuntu Wiki
- Documentation page not found - Read the Docs
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
- source_sentence: Suggest opt in User Test - Google Slides
sentences:
- ReleaseEngineering/TryServer - MozillaWiki
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
- Tutanota - Private Mailbox with End-to-End Encryption and Calendar
- source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx
sentences:
- What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides
- Parents.com - Articles, Recipes, and Ideas for Family Activities
- Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic
- source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio
sentences:
- Walmart - Everyday Low Prices on Groceries, Electronics, and More
- Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis
- Ambient Dreams Playlist on Amazon Music
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
metrics:
- type: pearson_cosine
value: 0.982180856269761
name: Pearson Cosine
- type: spearman_cosine
value: 0.24020738836963906
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9822 |
| **spearman_cosine** | **0.2402** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
* Size: 49,800 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
| <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> |
| <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> |
| <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 6
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0754 | 500 | 0.0216 | - |
| 0.1509 | 1000 | 0.0178 | - |
| 0.2263 | 1500 | 0.016 | - |
| 0.3018 | 2000 | 0.015 | - |
| 0.3772 | 2500 | 0.0144 | - |
| 0.4526 | 3000 | 0.013 | - |
| 0.5281 | 3500 | 0.0123 | - |
| 0.6035 | 4000 | 0.0119 | - |
| 0.6789 | 4500 | 0.0116 | - |
| 0.7544 | 5000 | 0.0102 | - |
| 0.8298 | 5500 | 0.0092 | - |
| 0.9053 | 6000 | 0.0087 | - |
| 0.9807 | 6500 | 0.0076 | - |
| 1.0561 | 7000 | 0.0068 | - |
| 1.1316 | 7500 | 0.0063 | - |
| 1.2070 | 8000 | 0.0061 | - |
| 1.2824 | 8500 | 0.0059 | - |
| 1.3579 | 9000 | 0.0055 | - |
| 1.4333 | 9500 | 0.0056 | - |
| 1.5088 | 10000 | 0.0045 | - |
| 1.5842 | 10500 | 0.004 | - |
| 1.6596 | 11000 | 0.0045 | - |
| 1.7351 | 11500 | 0.0039 | - |
| 1.8105 | 12000 | 0.0044 | - |
| 1.8859 | 12500 | 0.0036 | - |
| 1.9614 | 13000 | 0.0032 | - |
| 2.0368 | 13500 | 0.0034 | - |
| 2.1123 | 14000 | 0.0028 | - |
| 2.1877 | 14500 | 0.0029 | - |
| 2.2631 | 15000 | 0.0031 | - |
| 2.3386 | 15500 | 0.0026 | - |
| 2.4140 | 16000 | 0.0026 | - |
| 2.4894 | 16500 | 0.003 | - |
| 2.5649 | 17000 | 0.0027 | - |
| 2.6403 | 17500 | 0.0026 | - |
| 2.7158 | 18000 | 0.0024 | - |
| 2.7912 | 18500 | 0.0025 | - |
| 2.8666 | 19000 | 0.002 | - |
| 2.9421 | 19500 | 0.0022 | - |
| 3.0175 | 20000 | 0.0021 | - |
| 3.0929 | 20500 | 0.0021 | - |
| 3.1684 | 21000 | 0.0019 | - |
| 3.2438 | 21500 | 0.0021 | - |
| 3.3193 | 22000 | 0.002 | - |
| 3.3947 | 22500 | 0.0018 | - |
| 3.4701 | 23000 | 0.0018 | - |
| 3.5456 | 23500 | 0.0019 | - |
| 3.6210 | 24000 | 0.0017 | - |
| 3.6964 | 24500 | 0.0017 | - |
| 3.7719 | 25000 | 0.0016 | - |
| 3.8473 | 25500 | 0.0016 | - |
| 3.9228 | 26000 | 0.0015 | - |
| 3.9982 | 26500 | 0.0019 | - |
| 4.0736 | 27000 | 0.0016 | - |
| 4.1491 | 27500 | 0.0016 | - |
| 4.2245 | 28000 | 0.0015 | - |
| 4.2999 | 28500 | 0.0015 | - |
| 4.3754 | 29000 | 0.0016 | - |
| 4.4508 | 29500 | 0.0014 | - |
| 4.5263 | 30000 | 0.0015 | - |
| 4.6017 | 30500 | 0.0014 | - |
| 4.6771 | 31000 | 0.0017 | - |
| 4.7526 | 31500 | 0.0014 | - |
| 4.8280 | 32000 | 0.0016 | - |
| 4.9034 | 32500 | 0.0015 | - |
| 4.9789 | 33000 | 0.0014 | - |
| 5.0543 | 33500 | 0.0014 | - |
| 5.1298 | 34000 | 0.0013 | - |
| 5.2052 | 34500 | 0.0014 | - |
| 5.2806 | 35000 | 0.0014 | - |
| 5.3561 | 35500 | 0.0016 | - |
| 5.4315 | 36000 | 0.0013 | - |
| 5.5069 | 36500 | 0.0015 | - |
| 5.5824 | 37000 | 0.0013 | - |
| 5.6578 | 37500 | 0.0016 | - |
| 5.7333 | 38000 | 0.0015 | - |
| 5.8087 | 38500 | 0.0014 | - |
| 5.8841 | 39000 | 0.0015 | - |
| 5.9596 | 39500 | 0.0014 | - |
| -1 | -1 | - | 0.2402 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->