SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
    'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
    'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9822
spearman_cosine 0.2402

Training Details

Training Dataset

  • Size: 49,800 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 10 tokens
    • mean: 14.76 tokens
    • max: 21 tokens
    • min: 10 tokens
    • mean: 14.64 tokens
    • max: 21 tokens
    • min: 0.0
    • mean: 0.04
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    TripAdvisor - Hotel Reviews, Photos, and Travel Forums Docker Hub - Container Image Repository for DevOps Environments 0.0
    Mastodon - Decentralized Social Media for Niche Communities Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips 0.0
    YouTube Music - Music Videos, Official Albums, and Live Performances ESPN - Sports News, Live Scores, Stats, and Highlights 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 6
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_cosine
0.0754 500 0.0216 -
0.1509 1000 0.0178 -
0.2263 1500 0.016 -
0.3018 2000 0.015 -
0.3772 2500 0.0144 -
0.4526 3000 0.013 -
0.5281 3500 0.0123 -
0.6035 4000 0.0119 -
0.6789 4500 0.0116 -
0.7544 5000 0.0102 -
0.8298 5500 0.0092 -
0.9053 6000 0.0087 -
0.9807 6500 0.0076 -
1.0561 7000 0.0068 -
1.1316 7500 0.0063 -
1.2070 8000 0.0061 -
1.2824 8500 0.0059 -
1.3579 9000 0.0055 -
1.4333 9500 0.0056 -
1.5088 10000 0.0045 -
1.5842 10500 0.004 -
1.6596 11000 0.0045 -
1.7351 11500 0.0039 -
1.8105 12000 0.0044 -
1.8859 12500 0.0036 -
1.9614 13000 0.0032 -
2.0368 13500 0.0034 -
2.1123 14000 0.0028 -
2.1877 14500 0.0029 -
2.2631 15000 0.0031 -
2.3386 15500 0.0026 -
2.4140 16000 0.0026 -
2.4894 16500 0.003 -
2.5649 17000 0.0027 -
2.6403 17500 0.0026 -
2.7158 18000 0.0024 -
2.7912 18500 0.0025 -
2.8666 19000 0.002 -
2.9421 19500 0.0022 -
3.0175 20000 0.0021 -
3.0929 20500 0.0021 -
3.1684 21000 0.0019 -
3.2438 21500 0.0021 -
3.3193 22000 0.002 -
3.3947 22500 0.0018 -
3.4701 23000 0.0018 -
3.5456 23500 0.0019 -
3.6210 24000 0.0017 -
3.6964 24500 0.0017 -
3.7719 25000 0.0016 -
3.8473 25500 0.0016 -
3.9228 26000 0.0015 -
3.9982 26500 0.0019 -
4.0736 27000 0.0016 -
4.1491 27500 0.0016 -
4.2245 28000 0.0015 -
4.2999 28500 0.0015 -
4.3754 29000 0.0016 -
4.4508 29500 0.0014 -
4.5263 30000 0.0015 -
4.6017 30500 0.0014 -
4.6771 31000 0.0017 -
4.7526 31500 0.0014 -
4.8280 32000 0.0016 -
4.9034 32500 0.0015 -
4.9789 33000 0.0014 -
5.0543 33500 0.0014 -
5.1298 34000 0.0013 -
5.2052 34500 0.0014 -
5.2806 35000 0.0014 -
5.3561 35500 0.0016 -
5.4315 36000 0.0013 -
5.5069 36500 0.0015 -
5.5824 37000 0.0013 -
5.6578 37500 0.0016 -
5.7333 38000 0.0015 -
5.8087 38500 0.0014 -
5.8841 39000 0.0015 -
5.9596 39500 0.0014 -
-1 -1 - 0.2402

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
10
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Mozilla/smart-tab-embedding

Quantized
(25)
this model

Evaluation results