SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9822 |
spearman_cosine | 0.2402 |
Training Details
Training Dataset
- Size: 49,800 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 10 tokens
- mean: 14.76 tokens
- max: 21 tokens
- min: 10 tokens
- mean: 14.64 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.04
- max: 1.0
- Samples:
sentence_0 sentence_1 label TripAdvisor - Hotel Reviews, Photos, and Travel Forums
Docker Hub - Container Image Repository for DevOps Environments
0.0
Mastodon - Decentralized Social Media for Niche Communities
Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips
0.0
YouTube Music - Music Videos, Official Albums, and Live Performances
ESPN - Sports News, Live Scores, Stats, and Highlights
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
0.0754 | 500 | 0.0216 | - |
0.1509 | 1000 | 0.0178 | - |
0.2263 | 1500 | 0.016 | - |
0.3018 | 2000 | 0.015 | - |
0.3772 | 2500 | 0.0144 | - |
0.4526 | 3000 | 0.013 | - |
0.5281 | 3500 | 0.0123 | - |
0.6035 | 4000 | 0.0119 | - |
0.6789 | 4500 | 0.0116 | - |
0.7544 | 5000 | 0.0102 | - |
0.8298 | 5500 | 0.0092 | - |
0.9053 | 6000 | 0.0087 | - |
0.9807 | 6500 | 0.0076 | - |
1.0561 | 7000 | 0.0068 | - |
1.1316 | 7500 | 0.0063 | - |
1.2070 | 8000 | 0.0061 | - |
1.2824 | 8500 | 0.0059 | - |
1.3579 | 9000 | 0.0055 | - |
1.4333 | 9500 | 0.0056 | - |
1.5088 | 10000 | 0.0045 | - |
1.5842 | 10500 | 0.004 | - |
1.6596 | 11000 | 0.0045 | - |
1.7351 | 11500 | 0.0039 | - |
1.8105 | 12000 | 0.0044 | - |
1.8859 | 12500 | 0.0036 | - |
1.9614 | 13000 | 0.0032 | - |
2.0368 | 13500 | 0.0034 | - |
2.1123 | 14000 | 0.0028 | - |
2.1877 | 14500 | 0.0029 | - |
2.2631 | 15000 | 0.0031 | - |
2.3386 | 15500 | 0.0026 | - |
2.4140 | 16000 | 0.0026 | - |
2.4894 | 16500 | 0.003 | - |
2.5649 | 17000 | 0.0027 | - |
2.6403 | 17500 | 0.0026 | - |
2.7158 | 18000 | 0.0024 | - |
2.7912 | 18500 | 0.0025 | - |
2.8666 | 19000 | 0.002 | - |
2.9421 | 19500 | 0.0022 | - |
3.0175 | 20000 | 0.0021 | - |
3.0929 | 20500 | 0.0021 | - |
3.1684 | 21000 | 0.0019 | - |
3.2438 | 21500 | 0.0021 | - |
3.3193 | 22000 | 0.002 | - |
3.3947 | 22500 | 0.0018 | - |
3.4701 | 23000 | 0.0018 | - |
3.5456 | 23500 | 0.0019 | - |
3.6210 | 24000 | 0.0017 | - |
3.6964 | 24500 | 0.0017 | - |
3.7719 | 25000 | 0.0016 | - |
3.8473 | 25500 | 0.0016 | - |
3.9228 | 26000 | 0.0015 | - |
3.9982 | 26500 | 0.0019 | - |
4.0736 | 27000 | 0.0016 | - |
4.1491 | 27500 | 0.0016 | - |
4.2245 | 28000 | 0.0015 | - |
4.2999 | 28500 | 0.0015 | - |
4.3754 | 29000 | 0.0016 | - |
4.4508 | 29500 | 0.0014 | - |
4.5263 | 30000 | 0.0015 | - |
4.6017 | 30500 | 0.0014 | - |
4.6771 | 31000 | 0.0017 | - |
4.7526 | 31500 | 0.0014 | - |
4.8280 | 32000 | 0.0016 | - |
4.9034 | 32500 | 0.0015 | - |
4.9789 | 33000 | 0.0014 | - |
5.0543 | 33500 | 0.0014 | - |
5.1298 | 34000 | 0.0013 | - |
5.2052 | 34500 | 0.0014 | - |
5.2806 | 35000 | 0.0014 | - |
5.3561 | 35500 | 0.0016 | - |
5.4315 | 36000 | 0.0013 | - |
5.5069 | 36500 | 0.0015 | - |
5.5824 | 37000 | 0.0013 | - |
5.6578 | 37500 | 0.0016 | - |
5.7333 | 38000 | 0.0015 | - |
5.8087 | 38500 | 0.0014 | - |
5.8841 | 39000 | 0.0015 | - |
5.9596 | 39500 | 0.0014 | - |
-1 | -1 | - | 0.2402 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Mozilla/smart-tab-embedding
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosineself-reported0.982
- Spearman Cosineself-reported0.240