vazish commited on
Commit
ddd1077
·
unverified ·
1 Parent(s): 2278e76

add fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,46 +1,442 @@
1
  ---
 
 
 
 
 
 
2
  base_model: sentence-transformers/all-MiniLM-L6-v2
3
- library_name: transformers.js
4
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js.
8
 
9
- ## Usage (Transformers.js)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
12
- ```bash
13
- npm i @huggingface/transformers
14
  ```
 
 
 
 
 
 
 
 
 
 
15
 
16
- You can then use the model to compute embeddings like this:
 
 
 
 
17
 
18
- ```js
19
- import { pipeline } from '@huggingface/transformers';
 
20
 
21
- // Create a feature-extraction pipeline
22
- const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
 
 
 
 
 
 
 
 
 
23
 
24
- // Compute sentence embeddings
25
- const sentences = ['This is an example sentence', 'Each sentence is converted'];
26
- const output = await extractor(sentences, { pooling: 'mean', normalize: true });
27
- console.log(output);
28
- // Tensor {
29
- // dims: [ 2, 384 ],
30
- // type: 'float32',
31
- // data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ],
32
- // size: 768
33
- // }
34
  ```
35
 
36
- You can convert this Tensor to a nested JavaScript array using `.tolist()`:
37
- ```js
38
- console.log(output.tolist());
39
- // [
40
- // [ 0.04592696577310562, 0.07328180968761444, 0.05400655046105385, ... ],
41
- // [ 0.08188057690858841, 0.10760223120450974, -0.013241755776107311, ... ]
42
- // ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ```
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
 
1
  ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - loss:CosineSimilarityLoss
8
  base_model: sentence-transformers/all-MiniLM-L6-v2
9
+ widget:
10
+ - source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises
11
+ sentences:
12
+ - PulseAudio - Ubuntu Wiki
13
+ - Documentation page not found - Read the Docs
14
+ - Dwarf Fortress beginner tips - Video Games on Sports Illustrated
15
+ - source_sentence: Suggest opt in User Test - Google Slides
16
+ sentences:
17
+ - ReleaseEngineering/TryServer - MozillaWiki
18
+ - Dwarf Fortress beginner tips - Video Games on Sports Illustrated
19
+ - Tutanota - Private Mailbox with End-to-End Encryption and Calendar
20
+ - source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx
21
+ sentences:
22
+ - What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides
23
+ - Parents.com - Articles, Recipes, and Ideas for Family Activities
24
+ - Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic
25
+ - source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio
26
+ sentences:
27
+ - Walmart - Everyday Low Prices on Groceries, Electronics, and More
28
+ - Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis
29
+ - Ambient Dreams Playlist on Amazon Music
30
+ pipeline_tag: sentence-similarity
31
+ library_name: sentence-transformers
32
+ metrics:
33
+ - pearson_cosine
34
+ - spearman_cosine
35
+ model-index:
36
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
37
+ results:
38
+ - task:
39
+ type: semantic-similarity
40
+ name: Semantic Similarity
41
+ metrics:
42
+ - type: pearson_cosine
43
+ value: 0.982180856269761
44
+ name: Pearson Cosine
45
+ - type: spearman_cosine
46
+ value: 0.24020738836963906
47
+ name: Spearman Cosine
48
  ---
49
 
50
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
51
 
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
59
+ - **Maximum Sequence Length:** 256 tokens
60
+ - **Output Dimensionality:** 384 dimensions
61
+ - **Similarity Function:** Cosine Similarity
62
+ <!-- - **Training Dataset:** Unknown -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
 
 
 
 
74
  ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
77
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ (2): Normalize()
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
 
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
 
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
 
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("sentence_transformers_model_id")
98
+ # Run inference
99
+ sentences = [
100
+ 'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
101
+ 'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
102
+ 'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 384]
107
 
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
 
 
 
 
 
 
112
  ```
113
 
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ ## Evaluation
139
+
140
+ ### Metrics
141
+
142
+ #### Semantic Similarity
143
+
144
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
145
+
146
+ | Metric | Value |
147
+ |:--------------------|:-----------|
148
+ | pearson_cosine | 0.9822 |
149
+ | **spearman_cosine** | **0.2402** |
150
+
151
+ <!--
152
+ ## Bias, Risks and Limitations
153
+
154
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
155
+ -->
156
+
157
+ <!--
158
+ ### Recommendations
159
+
160
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
161
+ -->
162
+
163
+ ## Training Details
164
+
165
+ ### Training Dataset
166
+ * Size: 49,800 training samples
167
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
168
+ * Approximate statistics based on the first 1000 samples:
169
+ | | sentence_0 | sentence_1 | label |
170
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
171
+ | type | string | string | float |
172
+ | details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
173
+ * Samples:
174
+ | sentence_0 | sentence_1 | label |
175
+ |:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
176
+ | <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> |
177
+ | <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> |
178
+ | <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> |
179
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
180
+ ```json
181
+ {
182
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
183
+ }
184
+ ```
185
+
186
+ ### Training Hyperparameters
187
+ #### Non-Default Hyperparameters
188
+
189
+ - `per_device_train_batch_size`: 32
190
+ - `per_device_eval_batch_size`: 32
191
+ - `num_train_epochs`: 6
192
+ - `multi_dataset_batch_sampler`: round_robin
193
+
194
+ #### All Hyperparameters
195
+ <details><summary>Click to expand</summary>
196
+
197
+ - `overwrite_output_dir`: False
198
+ - `do_predict`: False
199
+ - `eval_strategy`: no
200
+ - `prediction_loss_only`: True
201
+ - `per_device_train_batch_size`: 32
202
+ - `per_device_eval_batch_size`: 32
203
+ - `per_gpu_train_batch_size`: None
204
+ - `per_gpu_eval_batch_size`: None
205
+ - `gradient_accumulation_steps`: 1
206
+ - `eval_accumulation_steps`: None
207
+ - `torch_empty_cache_steps`: None
208
+ - `learning_rate`: 5e-05
209
+ - `weight_decay`: 0.0
210
+ - `adam_beta1`: 0.9
211
+ - `adam_beta2`: 0.999
212
+ - `adam_epsilon`: 1e-08
213
+ - `max_grad_norm`: 1
214
+ - `num_train_epochs`: 6
215
+ - `max_steps`: -1
216
+ - `lr_scheduler_type`: linear
217
+ - `lr_scheduler_kwargs`: {}
218
+ - `warmup_ratio`: 0.0
219
+ - `warmup_steps`: 0
220
+ - `log_level`: passive
221
+ - `log_level_replica`: warning
222
+ - `log_on_each_node`: True
223
+ - `logging_nan_inf_filter`: True
224
+ - `save_safetensors`: True
225
+ - `save_on_each_node`: False
226
+ - `save_only_model`: False
227
+ - `restore_callback_states_from_checkpoint`: False
228
+ - `no_cuda`: False
229
+ - `use_cpu`: False
230
+ - `use_mps_device`: False
231
+ - `seed`: 42
232
+ - `data_seed`: None
233
+ - `jit_mode_eval`: False
234
+ - `use_ipex`: False
235
+ - `bf16`: False
236
+ - `fp16`: False
237
+ - `fp16_opt_level`: O1
238
+ - `half_precision_backend`: auto
239
+ - `bf16_full_eval`: False
240
+ - `fp16_full_eval`: False
241
+ - `tf32`: None
242
+ - `local_rank`: 0
243
+ - `ddp_backend`: None
244
+ - `tpu_num_cores`: None
245
+ - `tpu_metrics_debug`: False
246
+ - `debug`: []
247
+ - `dataloader_drop_last`: False
248
+ - `dataloader_num_workers`: 0
249
+ - `dataloader_prefetch_factor`: None
250
+ - `past_index`: -1
251
+ - `disable_tqdm`: False
252
+ - `remove_unused_columns`: True
253
+ - `label_names`: None
254
+ - `load_best_model_at_end`: False
255
+ - `ignore_data_skip`: False
256
+ - `fsdp`: []
257
+ - `fsdp_min_num_params`: 0
258
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
259
+ - `fsdp_transformer_layer_cls_to_wrap`: None
260
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
261
+ - `deepspeed`: None
262
+ - `label_smoothing_factor`: 0.0
263
+ - `optim`: adamw_torch
264
+ - `optim_args`: None
265
+ - `adafactor`: False
266
+ - `group_by_length`: False
267
+ - `length_column_name`: length
268
+ - `ddp_find_unused_parameters`: None
269
+ - `ddp_bucket_cap_mb`: None
270
+ - `ddp_broadcast_buffers`: False
271
+ - `dataloader_pin_memory`: True
272
+ - `dataloader_persistent_workers`: False
273
+ - `skip_memory_metrics`: True
274
+ - `use_legacy_prediction_loop`: False
275
+ - `push_to_hub`: False
276
+ - `resume_from_checkpoint`: None
277
+ - `hub_model_id`: None
278
+ - `hub_strategy`: every_save
279
+ - `hub_private_repo`: None
280
+ - `hub_always_push`: False
281
+ - `gradient_checkpointing`: False
282
+ - `gradient_checkpointing_kwargs`: None
283
+ - `include_inputs_for_metrics`: False
284
+ - `include_for_metrics`: []
285
+ - `eval_do_concat_batches`: True
286
+ - `fp16_backend`: auto
287
+ - `push_to_hub_model_id`: None
288
+ - `push_to_hub_organization`: None
289
+ - `mp_parameters`:
290
+ - `auto_find_batch_size`: False
291
+ - `full_determinism`: False
292
+ - `torchdynamo`: None
293
+ - `ray_scope`: last
294
+ - `ddp_timeout`: 1800
295
+ - `torch_compile`: False
296
+ - `torch_compile_backend`: None
297
+ - `torch_compile_mode`: None
298
+ - `dispatch_batches`: None
299
+ - `split_batches`: None
300
+ - `include_tokens_per_second`: False
301
+ - `include_num_input_tokens_seen`: False
302
+ - `neftune_noise_alpha`: None
303
+ - `optim_target_modules`: None
304
+ - `batch_eval_metrics`: False
305
+ - `eval_on_start`: False
306
+ - `use_liger_kernel`: False
307
+ - `eval_use_gather_object`: False
308
+ - `average_tokens_across_devices`: False
309
+ - `prompts`: None
310
+ - `batch_sampler`: batch_sampler
311
+ - `multi_dataset_batch_sampler`: round_robin
312
+
313
+ </details>
314
+
315
+ ### Training Logs
316
+ | Epoch | Step | Training Loss | spearman_cosine |
317
+ |:------:|:-----:|:-------------:|:---------------:|
318
+ | 0.0754 | 500 | 0.0216 | - |
319
+ | 0.1509 | 1000 | 0.0178 | - |
320
+ | 0.2263 | 1500 | 0.016 | - |
321
+ | 0.3018 | 2000 | 0.015 | - |
322
+ | 0.3772 | 2500 | 0.0144 | - |
323
+ | 0.4526 | 3000 | 0.013 | - |
324
+ | 0.5281 | 3500 | 0.0123 | - |
325
+ | 0.6035 | 4000 | 0.0119 | - |
326
+ | 0.6789 | 4500 | 0.0116 | - |
327
+ | 0.7544 | 5000 | 0.0102 | - |
328
+ | 0.8298 | 5500 | 0.0092 | - |
329
+ | 0.9053 | 6000 | 0.0087 | - |
330
+ | 0.9807 | 6500 | 0.0076 | - |
331
+ | 1.0561 | 7000 | 0.0068 | - |
332
+ | 1.1316 | 7500 | 0.0063 | - |
333
+ | 1.2070 | 8000 | 0.0061 | - |
334
+ | 1.2824 | 8500 | 0.0059 | - |
335
+ | 1.3579 | 9000 | 0.0055 | - |
336
+ | 1.4333 | 9500 | 0.0056 | - |
337
+ | 1.5088 | 10000 | 0.0045 | - |
338
+ | 1.5842 | 10500 | 0.004 | - |
339
+ | 1.6596 | 11000 | 0.0045 | - |
340
+ | 1.7351 | 11500 | 0.0039 | - |
341
+ | 1.8105 | 12000 | 0.0044 | - |
342
+ | 1.8859 | 12500 | 0.0036 | - |
343
+ | 1.9614 | 13000 | 0.0032 | - |
344
+ | 2.0368 | 13500 | 0.0034 | - |
345
+ | 2.1123 | 14000 | 0.0028 | - |
346
+ | 2.1877 | 14500 | 0.0029 | - |
347
+ | 2.2631 | 15000 | 0.0031 | - |
348
+ | 2.3386 | 15500 | 0.0026 | - |
349
+ | 2.4140 | 16000 | 0.0026 | - |
350
+ | 2.4894 | 16500 | 0.003 | - |
351
+ | 2.5649 | 17000 | 0.0027 | - |
352
+ | 2.6403 | 17500 | 0.0026 | - |
353
+ | 2.7158 | 18000 | 0.0024 | - |
354
+ | 2.7912 | 18500 | 0.0025 | - |
355
+ | 2.8666 | 19000 | 0.002 | - |
356
+ | 2.9421 | 19500 | 0.0022 | - |
357
+ | 3.0175 | 20000 | 0.0021 | - |
358
+ | 3.0929 | 20500 | 0.0021 | - |
359
+ | 3.1684 | 21000 | 0.0019 | - |
360
+ | 3.2438 | 21500 | 0.0021 | - |
361
+ | 3.3193 | 22000 | 0.002 | - |
362
+ | 3.3947 | 22500 | 0.0018 | - |
363
+ | 3.4701 | 23000 | 0.0018 | - |
364
+ | 3.5456 | 23500 | 0.0019 | - |
365
+ | 3.6210 | 24000 | 0.0017 | - |
366
+ | 3.6964 | 24500 | 0.0017 | - |
367
+ | 3.7719 | 25000 | 0.0016 | - |
368
+ | 3.8473 | 25500 | 0.0016 | - |
369
+ | 3.9228 | 26000 | 0.0015 | - |
370
+ | 3.9982 | 26500 | 0.0019 | - |
371
+ | 4.0736 | 27000 | 0.0016 | - |
372
+ | 4.1491 | 27500 | 0.0016 | - |
373
+ | 4.2245 | 28000 | 0.0015 | - |
374
+ | 4.2999 | 28500 | 0.0015 | - |
375
+ | 4.3754 | 29000 | 0.0016 | - |
376
+ | 4.4508 | 29500 | 0.0014 | - |
377
+ | 4.5263 | 30000 | 0.0015 | - |
378
+ | 4.6017 | 30500 | 0.0014 | - |
379
+ | 4.6771 | 31000 | 0.0017 | - |
380
+ | 4.7526 | 31500 | 0.0014 | - |
381
+ | 4.8280 | 32000 | 0.0016 | - |
382
+ | 4.9034 | 32500 | 0.0015 | - |
383
+ | 4.9789 | 33000 | 0.0014 | - |
384
+ | 5.0543 | 33500 | 0.0014 | - |
385
+ | 5.1298 | 34000 | 0.0013 | - |
386
+ | 5.2052 | 34500 | 0.0014 | - |
387
+ | 5.2806 | 35000 | 0.0014 | - |
388
+ | 5.3561 | 35500 | 0.0016 | - |
389
+ | 5.4315 | 36000 | 0.0013 | - |
390
+ | 5.5069 | 36500 | 0.0015 | - |
391
+ | 5.5824 | 37000 | 0.0013 | - |
392
+ | 5.6578 | 37500 | 0.0016 | - |
393
+ | 5.7333 | 38000 | 0.0015 | - |
394
+ | 5.8087 | 38500 | 0.0014 | - |
395
+ | 5.8841 | 39000 | 0.0015 | - |
396
+ | 5.9596 | 39500 | 0.0014 | - |
397
+ | -1 | -1 | - | 0.2402 |
398
+
399
+
400
+ ### Framework Versions
401
+ - Python: 3.11.11
402
+ - Sentence Transformers: 3.4.1
403
+ - Transformers: 4.48.2
404
+ - PyTorch: 2.5.1+cu124
405
+ - Accelerate: 1.3.0
406
+ - Datasets: 3.2.0
407
+ - Tokenizers: 0.21.0
408
+
409
+ ## Citation
410
+
411
+ ### BibTeX
412
+
413
+ #### Sentence Transformers
414
+ ```bibtex
415
+ @inproceedings{reimers-2019-sentence-bert,
416
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
417
+ author = "Reimers, Nils and Gurevych, Iryna",
418
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
419
+ month = "11",
420
+ year = "2019",
421
+ publisher = "Association for Computational Linguistics",
422
+ url = "https://arxiv.org/abs/1908.10084",
423
+ }
424
  ```
425
 
426
+ <!--
427
+ ## Glossary
428
+
429
+ *Clearly define terms in order to be accessible across audiences.*
430
+ -->
431
+
432
+ <!--
433
+ ## Model Card Authors
434
+
435
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
436
+ -->
437
+
438
+ <!--
439
+ ## Model Card Contact
440
 
441
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
442
+ -->
config.json CHANGED
@@ -1,10 +1,12 @@
1
  {
2
- "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
 
3
  "architectures": [
4
  "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
 
8
  "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
@@ -18,7 +20,8 @@
18
  "num_hidden_layers": 6,
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
- "transformers_version": "4.29.2",
 
22
  "type_vocab_size": 2,
23
  "use_cache": true,
24
  "vocab_size": 30522
 
1
  {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "/content/model",
4
  "architectures": [
5
  "BertModel"
6
  ],
7
  "attention_probs_dropout_prob": 0.1,
8
  "classifier_dropout": null,
9
+ "export_model_type": "transformer",
10
  "gradient_checkpointing": false,
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
 
20
  "num_hidden_layers": 6,
21
  "pad_token_id": 0,
22
  "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.46.3",
25
  "type_vocab_size": 2,
26
  "use_cache": true,
27
  "vocab_size": 30522
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e221ece836c01b12d84ed7f448acaaf5abded8125ff662af4e2d59ae5baf1ab5
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
onnx/model.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:759c3cd2b7fe7e93933ad23c4c9181b7396442a2ed746ec7c1d46192c469c46e
3
- size 90387606
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a2964c169dd7b5c7505025e67622937568a5af7d640cab9f96cfbfbd1da180f
3
+ size 90448255
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40bf4ee16090f5b80c5da880ceb013f821e8dbafd337c1c9f258aa2b7f38e4b4
3
+ size 53958494
onnx/model_fp16.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2cdb5e58291813b6d6e248ed69010100246821a367fa17b1b81ae9483744533d
3
- size 45297825
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:082fe7356be4fd6e673da6541b76fdb05fd275d236ab6daeb42f933b26b79faa
3
+ size 45317631
onnx/model_int8.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:afdb6f1a0e45b715d0bb9b11772f032c399babd23bfc31fed1c170afc848bdb1
3
- size 22972370
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35588bbe93db341794f76cb060b240c047daec6fb92783e98ceee67ad55ed2bb
3
+ size 22999753
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3eec3fbe7d0a7319b1d66bfa13b36e66b9a3874e1047d137033c29cbee5414b
3
+ size 54621818
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0b11ca7ec4c063f8b48a87857c5c5cc3d1ccbec85f24e0043469867cdd06f4
3
+ size 30061282
onnx/model_quantized.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:afdb6f1a0e45b715d0bb9b11772f032c399babd23bfc31fed1c170afc848bdb1
3
- size 22972370
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35588bbe93db341794f76cb060b240c047daec6fb92783e98ceee67ad55ed2bb
3
+ size 22999753
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:607b5f89955c7bbfabf4af4bb302f99fe934bd38c0da0ec02c3680f071d33b71
3
+ size 22999753
quantize_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "modes": [
3
+ "fp16",
4
+ "q8",
5
+ "int8",
6
+ "uint8",
7
+ "q4",
8
+ "q4f16",
9
+ "bnb4"
10
+ ],
11
+ "per_channel": true,
12
+ "reduce_range": true,
13
+ "block_size": null,
14
+ "is_symmetric": true,
15
+ "accuracy_level": null,
16
+ "quant_type": 1,
17
+ "op_block_list": null
18
+ }
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json CHANGED
@@ -1,7 +1,37 @@
1
  {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
 
1
  {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
  }
tokenizer.json CHANGED
@@ -2,14 +2,12 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 128,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
- "strategy": {
11
- "Fixed": 128
12
- },
13
  "direction": "Right",
14
  "pad_to_multiple_of": null,
15
  "pad_id": 0,
@@ -30683,4 +30681,4 @@
30683
  "##~": 30521
30684
  }
30685
  }
30686
- }
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 256,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
+ "strategy": "BatchLongest",
 
 
11
  "direction": "Right",
12
  "pad_to_multiple_of": null,
13
  "pad_id": 0,
 
30681
  "##~": 30521
30682
  }
30683
  }
30684
+ }
tokenizer_config.json CHANGED
@@ -1,15 +1,65 @@
1
  {
2
- "clean_up_tokenization_spaces": true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  "cls_token": "[CLS]",
4
  "do_basic_tokenize": true,
5
  "do_lower_case": true,
 
6
  "mask_token": "[MASK]",
7
- "model_max_length": 512,
 
8
  "never_split": null,
 
9
  "pad_token": "[PAD]",
 
 
10
  "sep_token": "[SEP]",
 
11
  "strip_accents": null,
12
  "tokenize_chinese_chars": true,
13
  "tokenizer_class": "BertTokenizer",
 
 
14
  "unk_token": "[UNK]"
15
  }
 
1
  {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
  "cls_token": "[CLS]",
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
  "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
  "never_split": null,
53
+ "pad_to_multiple_of": null,
54
  "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
  "sep_token": "[SEP]",
58
+ "stride": 0,
59
  "strip_accents": null,
60
  "tokenize_chinese_chars": true,
61
  "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
  "unk_token": "[UNK]"
65
  }