add fine-tuned model
Browse files- 1_Pooling/config.json +10 -0
- README.md +426 -30
- config.json +5 -2
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- onnx/model.onnx +2 -2
- onnx/model_bnb4.onnx +3 -0
- onnx/model_fp16.onnx +2 -2
- onnx/model_int8.onnx +2 -2
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_quantized.onnx +2 -2
- onnx/model_uint8.onnx +3 -0
- quantize_config.json +18 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +35 -5
- tokenizer.json +3 -5
- tokenizer_config.json +52 -2
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,46 +1,442 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
12 |
-
```bash
|
13 |
-
npm i @huggingface/transformers
|
14 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
// Tensor {
|
29 |
-
// dims: [ 2, 384 ],
|
30 |
-
// type: 'float32',
|
31 |
-
// data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ],
|
32 |
-
// size: 768
|
33 |
-
// }
|
34 |
```
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- loss:CosineSimilarityLoss
|
8 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
9 |
+
widget:
|
10 |
+
- source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises
|
11 |
+
sentences:
|
12 |
+
- PulseAudio - Ubuntu Wiki
|
13 |
+
- Documentation page not found - Read the Docs
|
14 |
+
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
|
15 |
+
- source_sentence: Suggest opt in User Test - Google Slides
|
16 |
+
sentences:
|
17 |
+
- ReleaseEngineering/TryServer - MozillaWiki
|
18 |
+
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
|
19 |
+
- Tutanota - Private Mailbox with End-to-End Encryption and Calendar
|
20 |
+
- source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx
|
21 |
+
sentences:
|
22 |
+
- What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides
|
23 |
+
- Parents.com - Articles, Recipes, and Ideas for Family Activities
|
24 |
+
- Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic
|
25 |
+
- source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio
|
26 |
+
sentences:
|
27 |
+
- Walmart - Everyday Low Prices on Groceries, Electronics, and More
|
28 |
+
- Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis
|
29 |
+
- Ambient Dreams Playlist on Amazon Music
|
30 |
+
pipeline_tag: sentence-similarity
|
31 |
+
library_name: sentence-transformers
|
32 |
+
metrics:
|
33 |
+
- pearson_cosine
|
34 |
+
- spearman_cosine
|
35 |
+
model-index:
|
36 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
37 |
+
results:
|
38 |
+
- task:
|
39 |
+
type: semantic-similarity
|
40 |
+
name: Semantic Similarity
|
41 |
+
metrics:
|
42 |
+
- type: pearson_cosine
|
43 |
+
value: 0.982180856269761
|
44 |
+
name: Pearson Cosine
|
45 |
+
- type: spearman_cosine
|
46 |
+
value: 0.24020738836963906
|
47 |
+
name: Spearman Cosine
|
48 |
---
|
49 |
|
50 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
51 |
|
52 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
53 |
+
|
54 |
+
## Model Details
|
55 |
+
|
56 |
+
### Model Description
|
57 |
+
- **Model Type:** Sentence Transformer
|
58 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
|
59 |
+
- **Maximum Sequence Length:** 256 tokens
|
60 |
+
- **Output Dimensionality:** 384 dimensions
|
61 |
+
- **Similarity Function:** Cosine Similarity
|
62 |
+
<!-- - **Training Dataset:** Unknown -->
|
63 |
+
<!-- - **Language:** Unknown -->
|
64 |
+
<!-- - **License:** Unknown -->
|
65 |
+
|
66 |
+
### Model Sources
|
67 |
+
|
68 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
69 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
70 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
71 |
+
|
72 |
+
### Full Model Architecture
|
73 |
|
|
|
|
|
|
|
74 |
```
|
75 |
+
SentenceTransformer(
|
76 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
77 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
78 |
+
(2): Normalize()
|
79 |
+
)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Usage
|
83 |
+
|
84 |
+
### Direct Usage (Sentence Transformers)
|
85 |
|
86 |
+
First install the Sentence Transformers library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install -U sentence-transformers
|
90 |
+
```
|
91 |
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
```python
|
94 |
+
from sentence_transformers import SentenceTransformer
|
95 |
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
98 |
+
# Run inference
|
99 |
+
sentences = [
|
100 |
+
'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
|
101 |
+
'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
|
102 |
+
'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
|
103 |
+
]
|
104 |
+
embeddings = model.encode(sentences)
|
105 |
+
print(embeddings.shape)
|
106 |
+
# [3, 384]
|
107 |
|
108 |
+
# Get the similarity scores for the embeddings
|
109 |
+
similarities = model.similarity(embeddings, embeddings)
|
110 |
+
print(similarities.shape)
|
111 |
+
# [3, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
```
|
113 |
|
114 |
+
<!--
|
115 |
+
### Direct Usage (Transformers)
|
116 |
+
|
117 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Downstream Usage (Sentence Transformers)
|
124 |
+
|
125 |
+
You can finetune this model on your own dataset.
|
126 |
+
|
127 |
+
<details><summary>Click to expand</summary>
|
128 |
+
|
129 |
+
</details>
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Out-of-Scope Use
|
134 |
+
|
135 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
## Evaluation
|
139 |
+
|
140 |
+
### Metrics
|
141 |
+
|
142 |
+
#### Semantic Similarity
|
143 |
+
|
144 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
145 |
+
|
146 |
+
| Metric | Value |
|
147 |
+
|:--------------------|:-----------|
|
148 |
+
| pearson_cosine | 0.9822 |
|
149 |
+
| **spearman_cosine** | **0.2402** |
|
150 |
+
|
151 |
+
<!--
|
152 |
+
## Bias, Risks and Limitations
|
153 |
+
|
154 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
155 |
+
-->
|
156 |
+
|
157 |
+
<!--
|
158 |
+
### Recommendations
|
159 |
+
|
160 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
161 |
+
-->
|
162 |
+
|
163 |
+
## Training Details
|
164 |
+
|
165 |
+
### Training Dataset
|
166 |
+
* Size: 49,800 training samples
|
167 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
168 |
+
* Approximate statistics based on the first 1000 samples:
|
169 |
+
| | sentence_0 | sentence_1 | label |
|
170 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
171 |
+
| type | string | string | float |
|
172 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
|
173 |
+
* Samples:
|
174 |
+
| sentence_0 | sentence_1 | label |
|
175 |
+
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
|
176 |
+
| <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> |
|
177 |
+
| <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> |
|
178 |
+
| <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> |
|
179 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
180 |
+
```json
|
181 |
+
{
|
182 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|
186 |
+
### Training Hyperparameters
|
187 |
+
#### Non-Default Hyperparameters
|
188 |
+
|
189 |
+
- `per_device_train_batch_size`: 32
|
190 |
+
- `per_device_eval_batch_size`: 32
|
191 |
+
- `num_train_epochs`: 6
|
192 |
+
- `multi_dataset_batch_sampler`: round_robin
|
193 |
+
|
194 |
+
#### All Hyperparameters
|
195 |
+
<details><summary>Click to expand</summary>
|
196 |
+
|
197 |
+
- `overwrite_output_dir`: False
|
198 |
+
- `do_predict`: False
|
199 |
+
- `eval_strategy`: no
|
200 |
+
- `prediction_loss_only`: True
|
201 |
+
- `per_device_train_batch_size`: 32
|
202 |
+
- `per_device_eval_batch_size`: 32
|
203 |
+
- `per_gpu_train_batch_size`: None
|
204 |
+
- `per_gpu_eval_batch_size`: None
|
205 |
+
- `gradient_accumulation_steps`: 1
|
206 |
+
- `eval_accumulation_steps`: None
|
207 |
+
- `torch_empty_cache_steps`: None
|
208 |
+
- `learning_rate`: 5e-05
|
209 |
+
- `weight_decay`: 0.0
|
210 |
+
- `adam_beta1`: 0.9
|
211 |
+
- `adam_beta2`: 0.999
|
212 |
+
- `adam_epsilon`: 1e-08
|
213 |
+
- `max_grad_norm`: 1
|
214 |
+
- `num_train_epochs`: 6
|
215 |
+
- `max_steps`: -1
|
216 |
+
- `lr_scheduler_type`: linear
|
217 |
+
- `lr_scheduler_kwargs`: {}
|
218 |
+
- `warmup_ratio`: 0.0
|
219 |
+
- `warmup_steps`: 0
|
220 |
+
- `log_level`: passive
|
221 |
+
- `log_level_replica`: warning
|
222 |
+
- `log_on_each_node`: True
|
223 |
+
- `logging_nan_inf_filter`: True
|
224 |
+
- `save_safetensors`: True
|
225 |
+
- `save_on_each_node`: False
|
226 |
+
- `save_only_model`: False
|
227 |
+
- `restore_callback_states_from_checkpoint`: False
|
228 |
+
- `no_cuda`: False
|
229 |
+
- `use_cpu`: False
|
230 |
+
- `use_mps_device`: False
|
231 |
+
- `seed`: 42
|
232 |
+
- `data_seed`: None
|
233 |
+
- `jit_mode_eval`: False
|
234 |
+
- `use_ipex`: False
|
235 |
+
- `bf16`: False
|
236 |
+
- `fp16`: False
|
237 |
+
- `fp16_opt_level`: O1
|
238 |
+
- `half_precision_backend`: auto
|
239 |
+
- `bf16_full_eval`: False
|
240 |
+
- `fp16_full_eval`: False
|
241 |
+
- `tf32`: None
|
242 |
+
- `local_rank`: 0
|
243 |
+
- `ddp_backend`: None
|
244 |
+
- `tpu_num_cores`: None
|
245 |
+
- `tpu_metrics_debug`: False
|
246 |
+
- `debug`: []
|
247 |
+
- `dataloader_drop_last`: False
|
248 |
+
- `dataloader_num_workers`: 0
|
249 |
+
- `dataloader_prefetch_factor`: None
|
250 |
+
- `past_index`: -1
|
251 |
+
- `disable_tqdm`: False
|
252 |
+
- `remove_unused_columns`: True
|
253 |
+
- `label_names`: None
|
254 |
+
- `load_best_model_at_end`: False
|
255 |
+
- `ignore_data_skip`: False
|
256 |
+
- `fsdp`: []
|
257 |
+
- `fsdp_min_num_params`: 0
|
258 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
259 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
260 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
261 |
+
- `deepspeed`: None
|
262 |
+
- `label_smoothing_factor`: 0.0
|
263 |
+
- `optim`: adamw_torch
|
264 |
+
- `optim_args`: None
|
265 |
+
- `adafactor`: False
|
266 |
+
- `group_by_length`: False
|
267 |
+
- `length_column_name`: length
|
268 |
+
- `ddp_find_unused_parameters`: None
|
269 |
+
- `ddp_bucket_cap_mb`: None
|
270 |
+
- `ddp_broadcast_buffers`: False
|
271 |
+
- `dataloader_pin_memory`: True
|
272 |
+
- `dataloader_persistent_workers`: False
|
273 |
+
- `skip_memory_metrics`: True
|
274 |
+
- `use_legacy_prediction_loop`: False
|
275 |
+
- `push_to_hub`: False
|
276 |
+
- `resume_from_checkpoint`: None
|
277 |
+
- `hub_model_id`: None
|
278 |
+
- `hub_strategy`: every_save
|
279 |
+
- `hub_private_repo`: None
|
280 |
+
- `hub_always_push`: False
|
281 |
+
- `gradient_checkpointing`: False
|
282 |
+
- `gradient_checkpointing_kwargs`: None
|
283 |
+
- `include_inputs_for_metrics`: False
|
284 |
+
- `include_for_metrics`: []
|
285 |
+
- `eval_do_concat_batches`: True
|
286 |
+
- `fp16_backend`: auto
|
287 |
+
- `push_to_hub_model_id`: None
|
288 |
+
- `push_to_hub_organization`: None
|
289 |
+
- `mp_parameters`:
|
290 |
+
- `auto_find_batch_size`: False
|
291 |
+
- `full_determinism`: False
|
292 |
+
- `torchdynamo`: None
|
293 |
+
- `ray_scope`: last
|
294 |
+
- `ddp_timeout`: 1800
|
295 |
+
- `torch_compile`: False
|
296 |
+
- `torch_compile_backend`: None
|
297 |
+
- `torch_compile_mode`: None
|
298 |
+
- `dispatch_batches`: None
|
299 |
+
- `split_batches`: None
|
300 |
+
- `include_tokens_per_second`: False
|
301 |
+
- `include_num_input_tokens_seen`: False
|
302 |
+
- `neftune_noise_alpha`: None
|
303 |
+
- `optim_target_modules`: None
|
304 |
+
- `batch_eval_metrics`: False
|
305 |
+
- `eval_on_start`: False
|
306 |
+
- `use_liger_kernel`: False
|
307 |
+
- `eval_use_gather_object`: False
|
308 |
+
- `average_tokens_across_devices`: False
|
309 |
+
- `prompts`: None
|
310 |
+
- `batch_sampler`: batch_sampler
|
311 |
+
- `multi_dataset_batch_sampler`: round_robin
|
312 |
+
|
313 |
+
</details>
|
314 |
+
|
315 |
+
### Training Logs
|
316 |
+
| Epoch | Step | Training Loss | spearman_cosine |
|
317 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
318 |
+
| 0.0754 | 500 | 0.0216 | - |
|
319 |
+
| 0.1509 | 1000 | 0.0178 | - |
|
320 |
+
| 0.2263 | 1500 | 0.016 | - |
|
321 |
+
| 0.3018 | 2000 | 0.015 | - |
|
322 |
+
| 0.3772 | 2500 | 0.0144 | - |
|
323 |
+
| 0.4526 | 3000 | 0.013 | - |
|
324 |
+
| 0.5281 | 3500 | 0.0123 | - |
|
325 |
+
| 0.6035 | 4000 | 0.0119 | - |
|
326 |
+
| 0.6789 | 4500 | 0.0116 | - |
|
327 |
+
| 0.7544 | 5000 | 0.0102 | - |
|
328 |
+
| 0.8298 | 5500 | 0.0092 | - |
|
329 |
+
| 0.9053 | 6000 | 0.0087 | - |
|
330 |
+
| 0.9807 | 6500 | 0.0076 | - |
|
331 |
+
| 1.0561 | 7000 | 0.0068 | - |
|
332 |
+
| 1.1316 | 7500 | 0.0063 | - |
|
333 |
+
| 1.2070 | 8000 | 0.0061 | - |
|
334 |
+
| 1.2824 | 8500 | 0.0059 | - |
|
335 |
+
| 1.3579 | 9000 | 0.0055 | - |
|
336 |
+
| 1.4333 | 9500 | 0.0056 | - |
|
337 |
+
| 1.5088 | 10000 | 0.0045 | - |
|
338 |
+
| 1.5842 | 10500 | 0.004 | - |
|
339 |
+
| 1.6596 | 11000 | 0.0045 | - |
|
340 |
+
| 1.7351 | 11500 | 0.0039 | - |
|
341 |
+
| 1.8105 | 12000 | 0.0044 | - |
|
342 |
+
| 1.8859 | 12500 | 0.0036 | - |
|
343 |
+
| 1.9614 | 13000 | 0.0032 | - |
|
344 |
+
| 2.0368 | 13500 | 0.0034 | - |
|
345 |
+
| 2.1123 | 14000 | 0.0028 | - |
|
346 |
+
| 2.1877 | 14500 | 0.0029 | - |
|
347 |
+
| 2.2631 | 15000 | 0.0031 | - |
|
348 |
+
| 2.3386 | 15500 | 0.0026 | - |
|
349 |
+
| 2.4140 | 16000 | 0.0026 | - |
|
350 |
+
| 2.4894 | 16500 | 0.003 | - |
|
351 |
+
| 2.5649 | 17000 | 0.0027 | - |
|
352 |
+
| 2.6403 | 17500 | 0.0026 | - |
|
353 |
+
| 2.7158 | 18000 | 0.0024 | - |
|
354 |
+
| 2.7912 | 18500 | 0.0025 | - |
|
355 |
+
| 2.8666 | 19000 | 0.002 | - |
|
356 |
+
| 2.9421 | 19500 | 0.0022 | - |
|
357 |
+
| 3.0175 | 20000 | 0.0021 | - |
|
358 |
+
| 3.0929 | 20500 | 0.0021 | - |
|
359 |
+
| 3.1684 | 21000 | 0.0019 | - |
|
360 |
+
| 3.2438 | 21500 | 0.0021 | - |
|
361 |
+
| 3.3193 | 22000 | 0.002 | - |
|
362 |
+
| 3.3947 | 22500 | 0.0018 | - |
|
363 |
+
| 3.4701 | 23000 | 0.0018 | - |
|
364 |
+
| 3.5456 | 23500 | 0.0019 | - |
|
365 |
+
| 3.6210 | 24000 | 0.0017 | - |
|
366 |
+
| 3.6964 | 24500 | 0.0017 | - |
|
367 |
+
| 3.7719 | 25000 | 0.0016 | - |
|
368 |
+
| 3.8473 | 25500 | 0.0016 | - |
|
369 |
+
| 3.9228 | 26000 | 0.0015 | - |
|
370 |
+
| 3.9982 | 26500 | 0.0019 | - |
|
371 |
+
| 4.0736 | 27000 | 0.0016 | - |
|
372 |
+
| 4.1491 | 27500 | 0.0016 | - |
|
373 |
+
| 4.2245 | 28000 | 0.0015 | - |
|
374 |
+
| 4.2999 | 28500 | 0.0015 | - |
|
375 |
+
| 4.3754 | 29000 | 0.0016 | - |
|
376 |
+
| 4.4508 | 29500 | 0.0014 | - |
|
377 |
+
| 4.5263 | 30000 | 0.0015 | - |
|
378 |
+
| 4.6017 | 30500 | 0.0014 | - |
|
379 |
+
| 4.6771 | 31000 | 0.0017 | - |
|
380 |
+
| 4.7526 | 31500 | 0.0014 | - |
|
381 |
+
| 4.8280 | 32000 | 0.0016 | - |
|
382 |
+
| 4.9034 | 32500 | 0.0015 | - |
|
383 |
+
| 4.9789 | 33000 | 0.0014 | - |
|
384 |
+
| 5.0543 | 33500 | 0.0014 | - |
|
385 |
+
| 5.1298 | 34000 | 0.0013 | - |
|
386 |
+
| 5.2052 | 34500 | 0.0014 | - |
|
387 |
+
| 5.2806 | 35000 | 0.0014 | - |
|
388 |
+
| 5.3561 | 35500 | 0.0016 | - |
|
389 |
+
| 5.4315 | 36000 | 0.0013 | - |
|
390 |
+
| 5.5069 | 36500 | 0.0015 | - |
|
391 |
+
| 5.5824 | 37000 | 0.0013 | - |
|
392 |
+
| 5.6578 | 37500 | 0.0016 | - |
|
393 |
+
| 5.7333 | 38000 | 0.0015 | - |
|
394 |
+
| 5.8087 | 38500 | 0.0014 | - |
|
395 |
+
| 5.8841 | 39000 | 0.0015 | - |
|
396 |
+
| 5.9596 | 39500 | 0.0014 | - |
|
397 |
+
| -1 | -1 | - | 0.2402 |
|
398 |
+
|
399 |
+
|
400 |
+
### Framework Versions
|
401 |
+
- Python: 3.11.11
|
402 |
+
- Sentence Transformers: 3.4.1
|
403 |
+
- Transformers: 4.48.2
|
404 |
+
- PyTorch: 2.5.1+cu124
|
405 |
+
- Accelerate: 1.3.0
|
406 |
+
- Datasets: 3.2.0
|
407 |
+
- Tokenizers: 0.21.0
|
408 |
+
|
409 |
+
## Citation
|
410 |
+
|
411 |
+
### BibTeX
|
412 |
+
|
413 |
+
#### Sentence Transformers
|
414 |
+
```bibtex
|
415 |
+
@inproceedings{reimers-2019-sentence-bert,
|
416 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
417 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
418 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
419 |
+
month = "11",
|
420 |
+
year = "2019",
|
421 |
+
publisher = "Association for Computational Linguistics",
|
422 |
+
url = "https://arxiv.org/abs/1908.10084",
|
423 |
+
}
|
424 |
```
|
425 |
|
426 |
+
<!--
|
427 |
+
## Glossary
|
428 |
+
|
429 |
+
*Clearly define terms in order to be accessible across audiences.*
|
430 |
+
-->
|
431 |
+
|
432 |
+
<!--
|
433 |
+
## Model Card Authors
|
434 |
+
|
435 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
436 |
+
-->
|
437 |
+
|
438 |
+
<!--
|
439 |
+
## Model Card Contact
|
440 |
|
441 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
442 |
+
-->
|
config.json
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
8 |
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
@@ -18,7 +20,8 @@
|
|
18 |
"num_hidden_layers": 6,
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
-
"
|
|
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "/content/model",
|
4 |
"architectures": [
|
5 |
"BertModel"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"classifier_dropout": null,
|
9 |
+
"export_model_type": "transformer",
|
10 |
"gradient_checkpointing": false,
|
11 |
"hidden_act": "gelu",
|
12 |
"hidden_dropout_prob": 0.1,
|
|
|
20 |
"num_hidden_layers": 6,
|
21 |
"pad_token_id": 0,
|
22 |
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.46.3",
|
25 |
"type_vocab_size": 2,
|
26 |
"use_cache": true,
|
27 |
"vocab_size": 30522
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e221ece836c01b12d84ed7f448acaaf5abded8125ff662af4e2d59ae5baf1ab5
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
onnx/model.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2964c169dd7b5c7505025e67622937568a5af7d640cab9f96cfbfbd1da180f
|
3 |
+
size 90448255
|
onnx/model_bnb4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40bf4ee16090f5b80c5da880ceb013f821e8dbafd337c1c9f258aa2b7f38e4b4
|
3 |
+
size 53958494
|
onnx/model_fp16.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:082fe7356be4fd6e673da6541b76fdb05fd275d236ab6daeb42f933b26b79faa
|
3 |
+
size 45317631
|
onnx/model_int8.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35588bbe93db341794f76cb060b240c047daec6fb92783e98ceee67ad55ed2bb
|
3 |
+
size 22999753
|
onnx/model_q4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3eec3fbe7d0a7319b1d66bfa13b36e66b9a3874e1047d137033c29cbee5414b
|
3 |
+
size 54621818
|
onnx/model_q4f16.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de0b11ca7ec4c063f8b48a87857c5c5cc3d1ccbec85f24e0043469867cdd06f4
|
3 |
+
size 30061282
|
onnx/model_quantized.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35588bbe93db341794f76cb060b240c047daec6fb92783e98ceee67ad55ed2bb
|
3 |
+
size 22999753
|
onnx/model_uint8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:607b5f89955c7bbfabf4af4bb302f99fe934bd38c0da0ec02c3680f071d33b71
|
3 |
+
size 22999753
|
quantize_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"modes": [
|
3 |
+
"fp16",
|
4 |
+
"q8",
|
5 |
+
"int8",
|
6 |
+
"uint8",
|
7 |
+
"q4",
|
8 |
+
"q4f16",
|
9 |
+
"bnb4"
|
10 |
+
],
|
11 |
+
"per_channel": true,
|
12 |
+
"reduce_range": true,
|
13 |
+
"block_size": null,
|
14 |
+
"is_symmetric": true,
|
15 |
+
"accuracy_level": null,
|
16 |
+
"quant_type": 1,
|
17 |
+
"op_block_list": null
|
18 |
+
}
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
}
|
tokenizer.json
CHANGED
@@ -2,14 +2,12 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
-
"strategy":
|
11 |
-
"Fixed": 128
|
12 |
-
},
|
13 |
"direction": "Right",
|
14 |
"pad_to_multiple_of": null,
|
15 |
"pad_id": 0,
|
@@ -30683,4 +30681,4 @@
|
|
30683 |
"##~": 30521
|
30684 |
}
|
30685 |
}
|
30686 |
-
}
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 256,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
+
"strategy": "BatchLongest",
|
|
|
|
|
11 |
"direction": "Right",
|
12 |
"pad_to_multiple_of": null,
|
13 |
"pad_id": 0,
|
|
|
30681 |
"##~": 30521
|
30682 |
}
|
30683 |
}
|
30684 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,15 +1,65 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"cls_token": "[CLS]",
|
4 |
"do_basic_tokenize": true,
|
5 |
"do_lower_case": true,
|
|
|
6 |
"mask_token": "[MASK]",
|
7 |
-
"
|
|
|
8 |
"never_split": null,
|
|
|
9 |
"pad_token": "[PAD]",
|
|
|
|
|
10 |
"sep_token": "[SEP]",
|
|
|
11 |
"strip_accents": null,
|
12 |
"tokenize_chinese_chars": true,
|
13 |
"tokenizer_class": "BertTokenizer",
|
|
|
|
|
14 |
"unk_token": "[UNK]"
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
"cls_token": "[CLS]",
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
"mask_token": "[MASK]",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 256,
|
52 |
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
"strip_accents": null,
|
60 |
"tokenize_chinese_chars": true,
|
61 |
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
"unk_token": "[UNK]"
|
65 |
}
|