metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.9790805727433154
- name: Recall
type: recall
value: 0.9648238440626479
- name: F1
type: f1
value: 0.9718999284886718
- name: Accuracy
type: accuracy
value: 0.985535111315454
Bert-NER
This model is a fine-tuned version of distilbert-base-uncased on the ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0457
- Precision: 0.9791
- Recall: 0.9648
- F1: 0.9719
- Accuracy: 0.9855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1213 | 0.58 | 500 | 0.0608 | 0.9658 | 0.9626 | 0.9642 | 0.9815 |
0.0562 | 1.17 | 1000 | 0.0513 | 0.9746 | 0.9638 | 0.9692 | 0.9841 |
0.0514 | 1.75 | 1500 | 0.0484 | 0.9778 | 0.9643 | 0.9710 | 0.9851 |
0.0468 | 2.33 | 2000 | 0.0471 | 0.9776 | 0.9653 | 0.9715 | 0.9853 |
0.0461 | 2.91 | 2500 | 0.0457 | 0.9791 | 0.9648 | 0.9719 | 0.9855 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1