--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: Bert-NER results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: indian_names split: train args: indian_names metrics: - name: Precision type: precision value: 0.9790805727433154 - name: Recall type: recall value: 0.9648238440626479 - name: F1 type: f1 value: 0.9718999284886718 - name: Accuracy type: accuracy value: 0.985535111315454 --- # Bert-NER This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0457 - Precision: 0.9791 - Recall: 0.9648 - F1: 0.9719 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1213 | 0.58 | 500 | 0.0608 | 0.9658 | 0.9626 | 0.9642 | 0.9815 | | 0.0562 | 1.17 | 1000 | 0.0513 | 0.9746 | 0.9638 | 0.9692 | 0.9841 | | 0.0514 | 1.75 | 1500 | 0.0484 | 0.9778 | 0.9643 | 0.9710 | 0.9851 | | 0.0468 | 2.33 | 2000 | 0.0471 | 0.9776 | 0.9653 | 0.9715 | 0.9853 | | 0.0461 | 2.91 | 2500 | 0.0457 | 0.9791 | 0.9648 | 0.9719 | 0.9855 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1