File size: 2,857 Bytes
edbbaaf 83fe4a1 edbbaaf 83fe4a1 edbbaaf af98386 edbbaaf af98386 edbbaaf af98386 edbbaaf af98386 edbbaaf 83fe4a1 edbbaaf af98386 edbbaaf dc85824 edbbaaf af98386 edbbaaf ef2154c af98386 edbbaaf 92c050f edbbaaf 92c050f edbbaaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: train
args: indian_names
metrics:
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 0.999957470335559
- name: F1
type: f1
value: 0.9999787347155767
- name: Accuracy
type: accuracy
value: 0.9999890011988694
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0000
- F1: 1.0000
- Accuracy: 1.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0127 | 1.0 | 626 | 0.0069 | 0.9955 | 0.9957 | 0.9956 | 0.9986 |
| 0.01 | 2.0 | 1252 | 0.0068 | 0.9972 | 0.9971 | 0.9972 | 0.9991 |
| 0.0075 | 3.0 | 1878 | 0.0029 | 0.9987 | 0.9982 | 0.9984 | 0.9995 |
| 0.006 | 4.0 | 2504 | 0.0010 | 0.9994 | 0.9994 | 0.9994 | 0.9998 |
| 0.0052 | 5.0 | 3130 | 0.0007 | 0.9997 | 0.9997 | 0.9997 | 0.9999 |
| 0.0032 | 6.0 | 3756 | 0.0003 | 0.9999 | 0.9998 | 0.9999 | 1.0000 |
| 0.003 | 7.0 | 4382 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 0.0013 | 8.0 | 5008 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0013 | 9.0 | 5634 | 0.0001 | 1.0000 | 0.9999 | 0.9999 | 1.0000 |
| 0.0011 | 10.0 | 6260 | 0.0000 | 1.0 | 1.0000 | 1.0000 | 1.0000 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|