|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: BAAI/bge-small-en-v1.5 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: mostly works because of the universal themes , earnest performances ... and |
|
excellent use of music by india 's popular gulzar and jagjit singh . |
|
- text: in all the annals of the movies , few films have been this odd , inexplicable |
|
and unpleasant . |
|
- text: director charles stone iii applies more detail to the film 's music than to |
|
the story line ; what 's best about drumline is its energy . |
|
- text: there 's nothing exactly wrong here , but there 's not nearly enough that |
|
's right . |
|
- text: it 's a bad sign in a thriller when you instantly know whodunit . |
|
pipeline_tag: text-classification |
|
inference: true |
|
model-index: |
|
- name: SetFit with BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8621636463481603 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with BAAI/bge-small-en-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 1 | <ul><li>'a sensitive , modest comic tragedy that works as both character study and symbolic examination of the huge economic changes sweeping modern china .'</li><li>'the year 2002 has conjured up more coming-of-age stories than seem possible , but take care of my cat emerges as the very best of them .'</li><li>'amy and matthew have a bit of a phony relationship , but the film works in spite of it .'</li></ul> | |
|
| 0 | <ul><li>'works on the whodunit level as its larger themes get lost in the murk of its own making'</li><li>"one of those strained caper movies that 's hardly any fun to watch and begins to vaporize from your memory minutes after it ends ."</li><li>"shunji iwai 's all about lily chou chou is a beautifully shot , but ultimately flawed film about growing up in japan ."</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8622 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot") |
|
# Run inference |
|
preds = model("it 's a bad sign in a thriller when you instantly know whodunit .") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 21.31 | 50 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (10, 10) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0031 | 1 | 0.2515 | - | |
|
| 0.1567 | 50 | 0.2298 | - | |
|
| 0.3135 | 100 | 0.2134 | - | |
|
| 0.4702 | 150 | 0.0153 | - | |
|
| 0.6270 | 200 | 0.0048 | - | |
|
| 0.7837 | 250 | 0.0024 | - | |
|
| 0.9404 | 300 | 0.0023 | - | |
|
| 1.0972 | 350 | 0.0016 | - | |
|
| 1.2539 | 400 | 0.0016 | - | |
|
| 1.4107 | 450 | 0.001 | - | |
|
| 1.5674 | 500 | 0.0013 | - | |
|
| 1.7241 | 550 | 0.0008 | - | |
|
| 1.8809 | 600 | 0.0008 | - | |
|
| 2.0376 | 650 | 0.0007 | - | |
|
| 2.1944 | 700 | 0.0008 | - | |
|
| 2.3511 | 750 | 0.0008 | - | |
|
| 2.5078 | 800 | 0.0007 | - | |
|
| 2.6646 | 850 | 0.0006 | - | |
|
| 2.8213 | 900 | 0.0006 | - | |
|
| 2.9781 | 950 | 0.0005 | - | |
|
| 3.1348 | 1000 | 0.0006 | - | |
|
| 3.2915 | 1050 | 0.0006 | - | |
|
| 3.4483 | 1100 | 0.0005 | - | |
|
| 3.6050 | 1150 | 0.0005 | - | |
|
| 3.7618 | 1200 | 0.0005 | - | |
|
| 3.9185 | 1250 | 0.0005 | - | |
|
| 4.0752 | 1300 | 0.0005 | - | |
|
| 4.2320 | 1350 | 0.0004 | - | |
|
| 4.3887 | 1400 | 0.0004 | - | |
|
| 4.5455 | 1450 | 0.0004 | - | |
|
| 4.7022 | 1500 | 0.0003 | - | |
|
| 4.8589 | 1550 | 0.0006 | - | |
|
| 5.0157 | 1600 | 0.0007 | - | |
|
| 5.1724 | 1650 | 0.0004 | - | |
|
| 5.3292 | 1700 | 0.0004 | - | |
|
| 5.4859 | 1750 | 0.0004 | - | |
|
| 5.6426 | 1800 | 0.0004 | - | |
|
| 5.7994 | 1850 | 0.0003 | - | |
|
| 5.9561 | 1900 | 0.0004 | - | |
|
| 6.1129 | 1950 | 0.0003 | - | |
|
| 6.2696 | 2000 | 0.0003 | - | |
|
| 6.4263 | 2050 | 0.0005 | - | |
|
| 6.5831 | 2100 | 0.0003 | - | |
|
| 6.7398 | 2150 | 0.0003 | - | |
|
| 6.8966 | 2200 | 0.0003 | - | |
|
| 7.0533 | 2250 | 0.0003 | - | |
|
| 7.2100 | 2300 | 0.0003 | - | |
|
| 7.3668 | 2350 | 0.0003 | - | |
|
| 7.5235 | 2400 | 0.0002 | - | |
|
| 7.6803 | 2450 | 0.0003 | - | |
|
| 7.8370 | 2500 | 0.0003 | - | |
|
| 7.9937 | 2550 | 0.0003 | - | |
|
| 8.1505 | 2600 | 0.0003 | - | |
|
| 8.3072 | 2650 | 0.0003 | - | |
|
| 8.4639 | 2700 | 0.0003 | - | |
|
| 8.6207 | 2750 | 0.0003 | - | |
|
| 8.7774 | 2800 | 0.0004 | - | |
|
| 8.9342 | 2850 | 0.0002 | - | |
|
| 9.0909 | 2900 | 0.0003 | - | |
|
| 9.2476 | 2950 | 0.0004 | - | |
|
| 9.4044 | 3000 | 0.0004 | - | |
|
| 9.5611 | 3050 | 0.0003 | - | |
|
| 9.7179 | 3100 | 0.0004 | - | |
|
| 9.8746 | 3150 | 0.0003 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.6.1 |
|
- Transformers: 4.39.1 |
|
- PyTorch: 2.1.0 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |