metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: >-
mostly works because of the universal themes , earnest performances ...
and excellent use of music by india 's popular gulzar and jagjit singh .
- text: >-
in all the annals of the movies , few films have been this odd ,
inexplicable and unpleasant .
- text: >-
director charles stone iii applies more detail to the film 's music than
to the story line ; what 's best about drumline is its energy .
- text: >-
there 's nothing exactly wrong here , but there 's not nearly enough that
's right .
- text: it 's a bad sign in a thriller when you instantly know whodunit .
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8621636463481603
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8622 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
# Run inference
preds = model("it 's a bad sign in a thriller when you instantly know whodunit .")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 21.31 | 50 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0031 | 1 | 0.2515 | - |
0.1567 | 50 | 0.2298 | - |
0.3135 | 100 | 0.2134 | - |
0.4702 | 150 | 0.0153 | - |
0.6270 | 200 | 0.0048 | - |
0.7837 | 250 | 0.0024 | - |
0.9404 | 300 | 0.0023 | - |
1.0972 | 350 | 0.0016 | - |
1.2539 | 400 | 0.0016 | - |
1.4107 | 450 | 0.001 | - |
1.5674 | 500 | 0.0013 | - |
1.7241 | 550 | 0.0008 | - |
1.8809 | 600 | 0.0008 | - |
2.0376 | 650 | 0.0007 | - |
2.1944 | 700 | 0.0008 | - |
2.3511 | 750 | 0.0008 | - |
2.5078 | 800 | 0.0007 | - |
2.6646 | 850 | 0.0006 | - |
2.8213 | 900 | 0.0006 | - |
2.9781 | 950 | 0.0005 | - |
3.1348 | 1000 | 0.0006 | - |
3.2915 | 1050 | 0.0006 | - |
3.4483 | 1100 | 0.0005 | - |
3.6050 | 1150 | 0.0005 | - |
3.7618 | 1200 | 0.0005 | - |
3.9185 | 1250 | 0.0005 | - |
4.0752 | 1300 | 0.0005 | - |
4.2320 | 1350 | 0.0004 | - |
4.3887 | 1400 | 0.0004 | - |
4.5455 | 1450 | 0.0004 | - |
4.7022 | 1500 | 0.0003 | - |
4.8589 | 1550 | 0.0006 | - |
5.0157 | 1600 | 0.0007 | - |
5.1724 | 1650 | 0.0004 | - |
5.3292 | 1700 | 0.0004 | - |
5.4859 | 1750 | 0.0004 | - |
5.6426 | 1800 | 0.0004 | - |
5.7994 | 1850 | 0.0003 | - |
5.9561 | 1900 | 0.0004 | - |
6.1129 | 1950 | 0.0003 | - |
6.2696 | 2000 | 0.0003 | - |
6.4263 | 2050 | 0.0005 | - |
6.5831 | 2100 | 0.0003 | - |
6.7398 | 2150 | 0.0003 | - |
6.8966 | 2200 | 0.0003 | - |
7.0533 | 2250 | 0.0003 | - |
7.2100 | 2300 | 0.0003 | - |
7.3668 | 2350 | 0.0003 | - |
7.5235 | 2400 | 0.0002 | - |
7.6803 | 2450 | 0.0003 | - |
7.8370 | 2500 | 0.0003 | - |
7.9937 | 2550 | 0.0003 | - |
8.1505 | 2600 | 0.0003 | - |
8.3072 | 2650 | 0.0003 | - |
8.4639 | 2700 | 0.0003 | - |
8.6207 | 2750 | 0.0003 | - |
8.7774 | 2800 | 0.0004 | - |
8.9342 | 2850 | 0.0002 | - |
9.0909 | 2900 | 0.0003 | - |
9.2476 | 2950 | 0.0004 | - |
9.4044 | 3000 | 0.0004 | - |
9.5611 | 3050 | 0.0003 | - |
9.7179 | 3100 | 0.0004 | - |
9.8746 | 3150 | 0.0003 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.1
- PyTorch: 2.1.0
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}