Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +114 -36
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -5,22 +5,21 @@ tags:
|
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
7 |
- generated_from_setfit_trainer
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
widget:
|
11 |
-
- text:
|
12 |
-
|
13 |
-
- text:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
good .
|
21 |
pipeline_tag: text-classification
|
22 |
inference: true
|
23 |
-
base_model: BAAI/bge-small-en-v1.5
|
24 |
model-index:
|
25 |
- name: SetFit with BAAI/bge-small-en-v1.5
|
26 |
results:
|
@@ -33,9 +32,10 @@ model-index:
|
|
33 |
split: test
|
34 |
metrics:
|
35 |
- type: accuracy
|
36 |
-
value: 0.
|
37 |
name: Accuracy
|
38 |
---
|
|
|
39 |
# SetFit with BAAI/bge-small-en-v1.5
|
40 |
|
41 |
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
@@ -64,17 +64,17 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
-
| Label
|
68 |
-
|
69 |
-
|
|
70 |
-
|
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
-
| **all** |
|
78 |
|
79 |
## Uses
|
80 |
|
@@ -90,10 +90,11 @@ Then you can load this model and run inference.
|
|
90 |
|
91 |
```python
|
92 |
from setfit import SetFitModel
|
|
|
93 |
# Download from the 🤗 Hub
|
94 |
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
|
95 |
# Run inference
|
96 |
-
preds = model("it 's
|
97 |
```
|
98 |
|
99 |
<!--
|
@@ -125,12 +126,12 @@ preds = model("it 's refreshing to see a romance this smart .")
|
|
125 |
### Training Set Metrics
|
126 |
| Training set | Min | Median | Max |
|
127 |
|:-------------|:----|:-------|:----|
|
128 |
-
| Word count |
|
129 |
|
130 |
-
| Label
|
131 |
-
|
132 |
-
|
|
133 |
-
|
|
134 |
|
135 |
### Training Hyperparameters
|
136 |
- batch_size: (16, 16)
|
@@ -150,19 +151,81 @@ preds = model("it 's refreshing to see a romance this smart .")
|
|
150 |
- load_best_model_at_end: False
|
151 |
|
152 |
### Training Results
|
153 |
-
| Epoch
|
154 |
-
|
155 |
-
| 0.
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
### Framework Versions
|
159 |
-
- Python: 3.10.
|
160 |
- SetFit: 1.0.3
|
161 |
-
- Sentence Transformers: 2.
|
162 |
-
- Transformers: 4.
|
163 |
-
- PyTorch: 2.
|
164 |
-
- Datasets: 2.
|
165 |
-
- Tokenizers: 0.15.
|
166 |
|
167 |
## Citation
|
168 |
|
@@ -179,6 +242,21 @@ preds = model("it 's refreshing to see a romance this smart .")
|
|
179 |
copyright = {Creative Commons Attribution 4.0 International}
|
180 |
}
|
181 |
```
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
7 |
- generated_from_setfit_trainer
|
8 |
+
base_model: BAAI/bge-small-en-v1.5
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: mostly works because of the universal themes , earnest performances ... and
|
13 |
+
excellent use of music by india 's popular gulzar and jagjit singh .
|
14 |
+
- text: in all the annals of the movies , few films have been this odd , inexplicable
|
15 |
+
and unpleasant .
|
16 |
+
- text: director charles stone iii applies more detail to the film 's music than to
|
17 |
+
the story line ; what 's best about drumline is its energy .
|
18 |
+
- text: there 's nothing exactly wrong here , but there 's not nearly enough that
|
19 |
+
's right .
|
20 |
+
- text: it 's a bad sign in a thriller when you instantly know whodunit .
|
|
|
21 |
pipeline_tag: text-classification
|
22 |
inference: true
|
|
|
23 |
model-index:
|
24 |
- name: SetFit with BAAI/bge-small-en-v1.5
|
25 |
results:
|
|
|
32 |
split: test
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
+
value: 0.8621636463481603
|
36 |
name: Accuracy
|
37 |
---
|
38 |
+
|
39 |
# SetFit with BAAI/bge-small-en-v1.5
|
40 |
|
41 |
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| 1 | <ul><li>'a sensitive , modest comic tragedy that works as both character study and symbolic examination of the huge economic changes sweeping modern china .'</li><li>'the year 2002 has conjured up more coming-of-age stories than seem possible , but take care of my cat emerges as the very best of them .'</li><li>'amy and matthew have a bit of a phony relationship , but the film works in spite of it .'</li></ul> |
|
70 |
+
| 0 | <ul><li>'works on the whodunit level as its larger themes get lost in the murk of its own making'</li><li>"one of those strained caper movies that 's hardly any fun to watch and begins to vaporize from your memory minutes after it ends ."</li><li>"shunji iwai 's all about lily chou chou is a beautifully shot , but ultimately flawed film about growing up in japan ."</li></ul> |
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
+
| **all** | 0.8622 |
|
78 |
|
79 |
## Uses
|
80 |
|
|
|
90 |
|
91 |
```python
|
92 |
from setfit import SetFitModel
|
93 |
+
|
94 |
# Download from the 🤗 Hub
|
95 |
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
|
96 |
# Run inference
|
97 |
+
preds = model("it 's a bad sign in a thriller when you instantly know whodunit .")
|
98 |
```
|
99 |
|
100 |
<!--
|
|
|
126 |
### Training Set Metrics
|
127 |
| Training set | Min | Median | Max |
|
128 |
|:-------------|:----|:-------|:----|
|
129 |
+
| Word count | 3 | 21.31 | 50 |
|
130 |
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:------|:----------------------|
|
133 |
+
| 0 | 50 |
|
134 |
+
| 1 | 50 |
|
135 |
|
136 |
### Training Hyperparameters
|
137 |
- batch_size: (16, 16)
|
|
|
151 |
- load_best_model_at_end: False
|
152 |
|
153 |
### Training Results
|
154 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
155 |
+
|:------:|:----:|:-------------:|:---------------:|
|
156 |
+
| 0.0031 | 1 | 0.2515 | - |
|
157 |
+
| 0.1567 | 50 | 0.2298 | - |
|
158 |
+
| 0.3135 | 100 | 0.2134 | - |
|
159 |
+
| 0.4702 | 150 | 0.0153 | - |
|
160 |
+
| 0.6270 | 200 | 0.0048 | - |
|
161 |
+
| 0.7837 | 250 | 0.0024 | - |
|
162 |
+
| 0.9404 | 300 | 0.0023 | - |
|
163 |
+
| 1.0972 | 350 | 0.0016 | - |
|
164 |
+
| 1.2539 | 400 | 0.0016 | - |
|
165 |
+
| 1.4107 | 450 | 0.001 | - |
|
166 |
+
| 1.5674 | 500 | 0.0013 | - |
|
167 |
+
| 1.7241 | 550 | 0.0008 | - |
|
168 |
+
| 1.8809 | 600 | 0.0008 | - |
|
169 |
+
| 2.0376 | 650 | 0.0007 | - |
|
170 |
+
| 2.1944 | 700 | 0.0008 | - |
|
171 |
+
| 2.3511 | 750 | 0.0008 | - |
|
172 |
+
| 2.5078 | 800 | 0.0007 | - |
|
173 |
+
| 2.6646 | 850 | 0.0006 | - |
|
174 |
+
| 2.8213 | 900 | 0.0006 | - |
|
175 |
+
| 2.9781 | 950 | 0.0005 | - |
|
176 |
+
| 3.1348 | 1000 | 0.0006 | - |
|
177 |
+
| 3.2915 | 1050 | 0.0006 | - |
|
178 |
+
| 3.4483 | 1100 | 0.0005 | - |
|
179 |
+
| 3.6050 | 1150 | 0.0005 | - |
|
180 |
+
| 3.7618 | 1200 | 0.0005 | - |
|
181 |
+
| 3.9185 | 1250 | 0.0005 | - |
|
182 |
+
| 4.0752 | 1300 | 0.0005 | - |
|
183 |
+
| 4.2320 | 1350 | 0.0004 | - |
|
184 |
+
| 4.3887 | 1400 | 0.0004 | - |
|
185 |
+
| 4.5455 | 1450 | 0.0004 | - |
|
186 |
+
| 4.7022 | 1500 | 0.0003 | - |
|
187 |
+
| 4.8589 | 1550 | 0.0006 | - |
|
188 |
+
| 5.0157 | 1600 | 0.0007 | - |
|
189 |
+
| 5.1724 | 1650 | 0.0004 | - |
|
190 |
+
| 5.3292 | 1700 | 0.0004 | - |
|
191 |
+
| 5.4859 | 1750 | 0.0004 | - |
|
192 |
+
| 5.6426 | 1800 | 0.0004 | - |
|
193 |
+
| 5.7994 | 1850 | 0.0003 | - |
|
194 |
+
| 5.9561 | 1900 | 0.0004 | - |
|
195 |
+
| 6.1129 | 1950 | 0.0003 | - |
|
196 |
+
| 6.2696 | 2000 | 0.0003 | - |
|
197 |
+
| 6.4263 | 2050 | 0.0005 | - |
|
198 |
+
| 6.5831 | 2100 | 0.0003 | - |
|
199 |
+
| 6.7398 | 2150 | 0.0003 | - |
|
200 |
+
| 6.8966 | 2200 | 0.0003 | - |
|
201 |
+
| 7.0533 | 2250 | 0.0003 | - |
|
202 |
+
| 7.2100 | 2300 | 0.0003 | - |
|
203 |
+
| 7.3668 | 2350 | 0.0003 | - |
|
204 |
+
| 7.5235 | 2400 | 0.0002 | - |
|
205 |
+
| 7.6803 | 2450 | 0.0003 | - |
|
206 |
+
| 7.8370 | 2500 | 0.0003 | - |
|
207 |
+
| 7.9937 | 2550 | 0.0003 | - |
|
208 |
+
| 8.1505 | 2600 | 0.0003 | - |
|
209 |
+
| 8.3072 | 2650 | 0.0003 | - |
|
210 |
+
| 8.4639 | 2700 | 0.0003 | - |
|
211 |
+
| 8.6207 | 2750 | 0.0003 | - |
|
212 |
+
| 8.7774 | 2800 | 0.0004 | - |
|
213 |
+
| 8.9342 | 2850 | 0.0002 | - |
|
214 |
+
| 9.0909 | 2900 | 0.0003 | - |
|
215 |
+
| 9.2476 | 2950 | 0.0004 | - |
|
216 |
+
| 9.4044 | 3000 | 0.0004 | - |
|
217 |
+
| 9.5611 | 3050 | 0.0003 | - |
|
218 |
+
| 9.7179 | 3100 | 0.0004 | - |
|
219 |
+
| 9.8746 | 3150 | 0.0003 | - |
|
220 |
|
221 |
### Framework Versions
|
222 |
+
- Python: 3.10.13
|
223 |
- SetFit: 1.0.3
|
224 |
+
- Sentence Transformers: 2.6.1
|
225 |
+
- Transformers: 4.39.1
|
226 |
+
- PyTorch: 2.1.0
|
227 |
+
- Datasets: 2.18.0
|
228 |
+
- Tokenizers: 0.15.2
|
229 |
|
230 |
## Citation
|
231 |
|
|
|
242 |
copyright = {Creative Commons Attribution 4.0 International}
|
243 |
}
|
244 |
```
|
245 |
+
|
246 |
+
<!--
|
247 |
+
## Glossary
|
248 |
+
|
249 |
+
*Clearly define terms in order to be accessible across audiences.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
## Model Card Authors
|
254 |
+
|
255 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
<!--
|
259 |
+
## Model Card Contact
|
260 |
+
|
261 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
262 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.39.1",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ed5ae86db9742447235984fb83c57b4660ebce9c29d81901fa05b1a37d8deeb
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8365e74dece1c00a9d150d662c5584ee6b7ecd3fb05c047095d7d40e2286a06a
|
3 |
+
size 3941
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|