Jorgeutd commited on
Commit
13412f0
1 Parent(s): ec98fa7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md CHANGED
@@ -1,3 +1,184 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
1
  ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: amy and matthew have a bit of a phony relationship , but the film works in
12
+ spite of it .
13
+ - text: it 's refreshing to see a romance this smart .
14
+ - text: bogdanich is unashamedly pro-serbian and makes little attempt to give voice
15
+ to the other side .
16
+ - text: sayles has an eye for the ways people of different ethnicities talk to and
17
+ about others outside the group .
18
+ - text: eddie murphy and owen wilson have a cute partnership in i spy , but the movie
19
+ around them is so often nearly nothing that their charm does n't do a load of
20
+ good .
21
+ pipeline_tag: text-classification
22
+ inference: true
23
+ base_model: BAAI/bge-small-en-v1.5
24
+ model-index:
25
+ - name: SetFit with BAAI/bge-small-en-v1.5
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.8478857770455793
37
+ name: Accuracy
38
+ ---
39
+ # SetFit with BAAI/bge-small-en-v1.5
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 2 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | negative | <ul><li>'there might be some sort of credible gender-provoking philosophy submerged here , but who the hell cares ?'</li><li>'represents the depths to which the girls-behaving-badly film has fallen .'</li><li>'-lrb- a -rrb- crushing disappointment .'</li></ul> |
70
+ | positive | <ul><li>'what saves it ... and makes it one of the better video-game-based flicks , is that the film acknowledges upfront that the plot makes no sense , such that the lack of linearity is the point of emotional and moral departure for protagonist alice .'</li><li>'but it could be , by its art and heart , a necessary one .'</li><li>'a culture-clash comedy that , in addition to being very funny , captures some of the discomfort and embarrassment of being a bumbling american in europe .'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.862 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
95
+ # Run inference
96
+ preds = model("it 's refreshing to see a romance this smart .")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 6 | 22.5 | 45 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:---------|:----------------------|
132
+ | negative | 50 |
133
+ | positive | 50 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (16, 16)
137
+ - num_epochs: (10, 10)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: False
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:-----:|:----:|:-------------:|:---------------:|
155
+ | 0.2 | 1 | 0.2109 | - |
156
+ | 10.0 | 50 | 0.01 | - |
157
+
158
+ ### Framework Versions
159
+ - Python: 3.10.11
160
+ - SetFit: 1.0.3
161
+ - Sentence Transformers: 2.3.1
162
+ - Transformers: 4.37.2
163
+ - PyTorch: 2.2.0+cu121
164
+ - Datasets: 2.16.1
165
+ - Tokenizers: 0.15.1
166
+
167
+ ## Citation
168
+
169
+ ### BibTeX
170
+ ```bibtex
171
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
172
+ doi = {10.48550/ARXIV.2209.11055},
173
+ url = {https://arxiv.org/abs/2209.11055},
174
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
175
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
176
+ title = {Efficient Few-Shot Learning Without Prompts},
177
+ publisher = {arXiv},
178
+ year = {2022},
179
+ copyright = {Creative Commons Attribution 4.0 International}
180
+ }
181
+ ```
182
+ ---
183
  license: apache-2.0
184
  ---