|
--- |
|
language: en |
|
license: apache-2.0 |
|
base_model: |
|
- IntelLabs/sqft-phi-3-mini-4k-50-base-gptq |
|
library_name: peft |
|
--- |
|
|
|
# SQFT Fine-tuned Model: sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter |
|
|
|
- Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base-gptq](https://huggingface.co./IntelLabs/sqft-phi-3-mini-4k-50-base-gptq) |
|
- Sparsity: 50% |
|
- Quantization: INT4 (GPTQ) |
|
- Finetune Method: SQFT |
|
- Finetune data: [winogrande](https://huggingface.co./datasets/winogrande), [boolq](https://huggingface.co./datasets/google/boolq), [openbookqa](https://huggingface.co./datasets/allenai/openbookqa), [hellaswag](https://huggingface.co./datasets/Rowan/hellaswag), [piqa](https://huggingface.co./datasets/piqa), [ai2_arc](https://huggingface.co./datasets/allenai/ai2_arc) training dataset (83k) |
|
- Sub-Adapter: Heuristic |
|
|
|
### Evaluation |
|
|
|
```bash |
|
BASE_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-base-gptq |
|
ADAPTER_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter |
|
lm_eval --model hf --model_args pretrained=${BASE_MODEL_NAME},peft=${ADAPTER_MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks piqa,arc_easy,arc_challenge,hellaswag,openbookqa,boolq,winogrande --batch_size auto:4 |
|
``` |
|
|
|
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. |
|
|
|
## Model Sources |
|
|
|
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) |
|
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) |
|
|
|
## Citation |
|
|
|
```bash |
|
@article{munoz2024sqft, |
|
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, |
|
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, |
|
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |
|
|