File size: 1,999 Bytes
53b7af9 ae22f06 53b7af9 a930a78 53b7af9 a930a78 53b7af9 a930a78 feb2147 a930a78 feb2147 a930a78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language: en
license: apache-2.0
base_model:
- IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
library_name: peft
---
# SQFT Fine-tuned Model: sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter
- Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base-gptq](https://huggingface.co./IntelLabs/sqft-phi-3-mini-4k-50-base-gptq)
- Sparsity: 50%
- Quantization: INT4 (GPTQ)
- Finetune Method: SQFT
- Finetune data: [winogrande](https://huggingface.co./datasets/winogrande), [boolq](https://huggingface.co./datasets/google/boolq), [openbookqa](https://huggingface.co./datasets/allenai/openbookqa), [hellaswag](https://huggingface.co./datasets/Rowan/hellaswag), [piqa](https://huggingface.co./datasets/piqa), [ai2_arc](https://huggingface.co./datasets/allenai/ai2_arc) training dataset (83k)
- Sub-Adapter: Heuristic
### Evaluation
```bash
BASE_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
ADAPTER_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter
lm_eval --model hf --model_args pretrained=${BASE_MODEL_NAME},peft=${ADAPTER_MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks piqa,arc_easy,arc_challenge,hellaswag,openbookqa,boolq,winogrande --batch_size auto:4
```
Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command.
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
```
## License
Apache-2.0
|