metadata
language: en
license: apache-2.0
base_model:
- IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
library_name: peft
SQFT Fine-tuned Model: sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter
- Base Model: IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
- Sparsity: 50%
- Quantization: INT4 (GPTQ)
- Finetune Method: SQFT
- Finetune data: winogrande, boolq, openbookqa, hellaswag, piqa, ai2_arc training dataset (83k)
- Sub-Adapter: Heuristic
Evaluation
BASE_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
ADAPTER_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-gptq-cs-heu-adapter
lm_eval --model hf --model_args pretrained=${BASE_MODEL_NAME},peft=${ADAPTER_MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks piqa,arc_easy,arc_challenge,hellaswag,openbookqa,boolq,winogrande --batch_size auto:4
Refer to our repo for the environment information to run this command.
Model Sources
- Repository: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT
- Paper: SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Citation
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
License
Apache-2.0