|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:700 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Goodwill arising from the acquisition of Xilinx was valued at $22,784 |
|
million, attributed mainly to increased synergies expected from the integration |
|
of Xilinx into the Company's Embedded and Data Center segments. |
|
sentences: |
|
- What growth strategy does lululemon plan to employ for their operations in China |
|
Mainland? |
|
- What was the fair value of the goodwill generated from the acquisition of Xilinx? |
|
- How did the products gross margin percentage change from 2022 to 2023? |
|
- source_sentence: In 2023, UnitedHealthcare's regulated subsidiaries paid $8.0 billion |
|
in dividends to their parent companies. |
|
sentences: |
|
- What amount did UnitedHealthcare's regulated subsidiaries pay as dividends to |
|
their parent companies in 2023? |
|
- What initiative does the Basel, Rotterdam and Stockholm Conventions focus on? |
|
- What is the primary target of Palantir's customer acquisition strategy? |
|
- source_sentence: These assumptions about future disposition of inventory are inherently |
|
uncertain and changes in our estimates and assumptions may cause us to realize |
|
material write-downs in the future. |
|
sentences: |
|
- How did the return on average common stockholders’ equity (GAAP) change from 2021 |
|
to 2023? |
|
- What is the effect of changes in inventory estimates on the company's financial |
|
statements? |
|
- What is the principal business experience of David M. Chojnowski before his current |
|
role as Senior Vice President and Controller? |
|
- source_sentence: During the years ended December 31, 2021, 2022 and 2023, the weighted-average |
|
fair value of stock options granted under the Plans was $96.50, $79.75 and $65.22 |
|
per share, respectively. |
|
sentences: |
|
- What was the weighted-average grant-date fair value of stock options granted in |
|
2021, 2022, and 2023? |
|
- What major weather events contributed to the increase in losses reported in 2023? |
|
- What is the V2MOM, and how is it used within the company? |
|
- source_sentence: During fiscal year 2023, we repurchased 10.4 million shares for |
|
approximately $1,295 million. |
|
sentences: |
|
- How much does Kroger plan to invest in training its associates in 2023? |
|
- What total amount was spent on share repurchases during fiscal year 2023? |
|
- What judicial decision occurred in August 2023 regarding the antitrust lawsuits |
|
against the airlines? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6742857142857143 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8052380952380952 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8458730158730159 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8933333333333333 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6742857142857143 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26841269841269844 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16917460317460317 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08933333333333332 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6742857142857143 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8052380952380952 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8458730158730159 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8933333333333333 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7837644898436449 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7486834215167553 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7524444605977678 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.669047619047619 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8023809523809524 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8444444444444444 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.893015873015873 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.669047619047619 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26746031746031745 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1688888888888889 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08930158730158728 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.669047619047619 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8023809523809524 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8444444444444444 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.893015873015873 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7805515576068588 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.744609410430839 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7483879357643801 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6623809523809524 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7933333333333333 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8334920634920635 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8831746031746032 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6623809523809524 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2644444444444444 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16669841269841268 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08831746031746031 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6623809523809524 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7933333333333333 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8334920634920635 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8831746031746032 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.772554826031694 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7372027588813304 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7413385015201707 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6419047619047619 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7698412698412699 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8131746031746032 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8628571428571429 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6419047619047619 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2566137566137566 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16263492063492063 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08628571428571427 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6419047619047619 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7698412698412699 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8131746031746032 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8628571428571429 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7522219583193863 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7168462459057695 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7216902902285594 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5901587301587301 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7241269841269842 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.7661904761904762 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8185714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5901587301587301 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.24137566137566135 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.15323809523809523 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08185714285714285 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5901587301587301 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7241269841269842 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.7661904761904762 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8185714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7039266407844053 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6673720710506443 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6731612260450521 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test") |
|
# Run inference |
|
sentences = [ |
|
'During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million.', |
|
'What total amount was spent on share repurchases during fiscal year 2023?', |
|
'What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6743 | |
|
| cosine_accuracy@3 | 0.8052 | |
|
| cosine_accuracy@5 | 0.8459 | |
|
| cosine_accuracy@10 | 0.8933 | |
|
| cosine_precision@1 | 0.6743 | |
|
| cosine_precision@3 | 0.2684 | |
|
| cosine_precision@5 | 0.1692 | |
|
| cosine_precision@10 | 0.0893 | |
|
| cosine_recall@1 | 0.6743 | |
|
| cosine_recall@3 | 0.8052 | |
|
| cosine_recall@5 | 0.8459 | |
|
| cosine_recall@10 | 0.8933 | |
|
| cosine_ndcg@10 | 0.7838 | |
|
| cosine_mrr@10 | 0.7487 | |
|
| **cosine_map@100** | **0.7524** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.669 | |
|
| cosine_accuracy@3 | 0.8024 | |
|
| cosine_accuracy@5 | 0.8444 | |
|
| cosine_accuracy@10 | 0.893 | |
|
| cosine_precision@1 | 0.669 | |
|
| cosine_precision@3 | 0.2675 | |
|
| cosine_precision@5 | 0.1689 | |
|
| cosine_precision@10 | 0.0893 | |
|
| cosine_recall@1 | 0.669 | |
|
| cosine_recall@3 | 0.8024 | |
|
| cosine_recall@5 | 0.8444 | |
|
| cosine_recall@10 | 0.893 | |
|
| cosine_ndcg@10 | 0.7806 | |
|
| cosine_mrr@10 | 0.7446 | |
|
| **cosine_map@100** | **0.7484** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6624 | |
|
| cosine_accuracy@3 | 0.7933 | |
|
| cosine_accuracy@5 | 0.8335 | |
|
| cosine_accuracy@10 | 0.8832 | |
|
| cosine_precision@1 | 0.6624 | |
|
| cosine_precision@3 | 0.2644 | |
|
| cosine_precision@5 | 0.1667 | |
|
| cosine_precision@10 | 0.0883 | |
|
| cosine_recall@1 | 0.6624 | |
|
| cosine_recall@3 | 0.7933 | |
|
| cosine_recall@5 | 0.8335 | |
|
| cosine_recall@10 | 0.8832 | |
|
| cosine_ndcg@10 | 0.7726 | |
|
| cosine_mrr@10 | 0.7372 | |
|
| **cosine_map@100** | **0.7413** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6419 | |
|
| cosine_accuracy@3 | 0.7698 | |
|
| cosine_accuracy@5 | 0.8132 | |
|
| cosine_accuracy@10 | 0.8629 | |
|
| cosine_precision@1 | 0.6419 | |
|
| cosine_precision@3 | 0.2566 | |
|
| cosine_precision@5 | 0.1626 | |
|
| cosine_precision@10 | 0.0863 | |
|
| cosine_recall@1 | 0.6419 | |
|
| cosine_recall@3 | 0.7698 | |
|
| cosine_recall@5 | 0.8132 | |
|
| cosine_recall@10 | 0.8629 | |
|
| cosine_ndcg@10 | 0.7522 | |
|
| cosine_mrr@10 | 0.7168 | |
|
| **cosine_map@100** | **0.7217** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5902 | |
|
| cosine_accuracy@3 | 0.7241 | |
|
| cosine_accuracy@5 | 0.7662 | |
|
| cosine_accuracy@10 | 0.8186 | |
|
| cosine_precision@1 | 0.5902 | |
|
| cosine_precision@3 | 0.2414 | |
|
| cosine_precision@5 | 0.1532 | |
|
| cosine_precision@10 | 0.0819 | |
|
| cosine_recall@1 | 0.5902 | |
|
| cosine_recall@3 | 0.7241 | |
|
| cosine_recall@5 | 0.7662 | |
|
| cosine_recall@10 | 0.8186 | |
|
| cosine_ndcg@10 | 0.7039 | |
|
| cosine_mrr@10 | 0.6674 | |
|
| **cosine_map@100** | **0.6732** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.7273 | 1 | 0.6718 | 0.7044 | 0.7160 | 0.6086 | 0.7194 | |
|
| 1.4545 | 2 | 0.6897 | 0.7192 | 0.7298 | 0.6329 | 0.7314 | |
|
| **2.9091** | **4** | **0.7051** | **0.7292** | **0.7387** | **0.6504** | **0.7409** | |
|
| 0.7273 | 1 | 0.7051 | 0.7292 | 0.7387 | 0.6504 | 0.7409 | |
|
| 1.4545 | 2 | 0.7148 | 0.7366 | 0.7446 | 0.6636 | 0.7473 | |
|
| **2.9091** | **4** | **0.7217** | **0.7413** | **0.7484** | **0.6732** | **0.7524** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |