IlhamEbdesk's picture
Add new SentenceTransformer model.
177a6fe verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:700
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Goodwill arising from the acquisition of Xilinx was valued at $22,784
      million, attributed mainly to increased synergies expected from the
      integration of Xilinx into the Company's Embedded and Data Center
      segments.
    sentences:
      - >-
        What growth strategy does lululemon plan to employ for their operations
        in China Mainland?
      - >-
        What was the fair value of the goodwill generated from the acquisition
        of Xilinx?
      - How did the products gross margin percentage change from 2022 to 2023?
  - source_sentence: >-
      In 2023, UnitedHealthcare's regulated subsidiaries paid $8.0 billion in
      dividends to their parent companies.
    sentences:
      - >-
        What amount did UnitedHealthcare's regulated subsidiaries pay as
        dividends to their parent companies in 2023?
      - >-
        What initiative does the Basel, Rotterdam and Stockholm Conventions
        focus on?
      - What is the primary target of Palantir's customer acquisition strategy?
  - source_sentence: >-
      These assumptions about future disposition of inventory are inherently
      uncertain and changes in our estimates and assumptions may cause us to
      realize material write-downs in the future.
    sentences:
      - >-
        How did the return on average common stockholders’ equity (GAAP) change
        from 2021 to 2023?
      - >-
        What is the effect of changes in inventory estimates on the company's
        financial statements?
      - >-
        What is the principal business experience of David M. Chojnowski before
        his current role as Senior Vice President and Controller?
  - source_sentence: >-
      During the years ended December 31, 2021, 2022 and 2023, the
      weighted-average fair value of stock options granted under the Plans was
      $96.50, $79.75 and $65.22 per share, respectively.
    sentences:
      - >-
        What was the weighted-average grant-date fair value of stock options
        granted in 2021, 2022, and 2023?
      - >-
        What major weather events contributed to the increase in losses reported
        in 2023?
      - What is the V2MOM, and how is it used within the company?
  - source_sentence: >-
      During fiscal year 2023, we repurchased 10.4 million shares for
      approximately $1,295 million.
    sentences:
      - How much does Kroger plan to invest in training its associates in 2023?
      - >-
        What total amount was spent on share repurchases during fiscal year
        2023?
      - >-
        What judicial decision occurred in August 2023 regarding the antitrust
        lawsuits against the airlines?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6742857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8052380952380952
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8458730158730159
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8933333333333333
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6742857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26841269841269844
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16917460317460317
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08933333333333332
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6742857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8052380952380952
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8458730158730159
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8933333333333333
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7837644898436449
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7486834215167553
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7524444605977678
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.669047619047619
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8023809523809524
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8444444444444444
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.893015873015873
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.669047619047619
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26746031746031745
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1688888888888889
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08930158730158728
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.669047619047619
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8023809523809524
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8444444444444444
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.893015873015873
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7805515576068588
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.744609410430839
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7483879357643801
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6623809523809524
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7933333333333333
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8334920634920635
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8831746031746032
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6623809523809524
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2644444444444444
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16669841269841268
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08831746031746031
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6623809523809524
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7933333333333333
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8334920634920635
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8831746031746032
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.772554826031694
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7372027588813304
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7413385015201707
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6419047619047619
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7698412698412699
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8131746031746032
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8628571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6419047619047619
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2566137566137566
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16263492063492063
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08628571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6419047619047619
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7698412698412699
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8131746031746032
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8628571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7522219583193863
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7168462459057695
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7216902902285594
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5901587301587301
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7241269841269842
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7661904761904762
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8185714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5901587301587301
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24137566137566135
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15323809523809523
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08185714285714285
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5901587301587301
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7241269841269842
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7661904761904762
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8185714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7039266407844053
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6673720710506443
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6731612260450521
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test")
# Run inference
sentences = [
    'During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million.',
    'What total amount was spent on share repurchases during fiscal year 2023?',
    'What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6743
cosine_accuracy@3 0.8052
cosine_accuracy@5 0.8459
cosine_accuracy@10 0.8933
cosine_precision@1 0.6743
cosine_precision@3 0.2684
cosine_precision@5 0.1692
cosine_precision@10 0.0893
cosine_recall@1 0.6743
cosine_recall@3 0.8052
cosine_recall@5 0.8459
cosine_recall@10 0.8933
cosine_ndcg@10 0.7838
cosine_mrr@10 0.7487
cosine_map@100 0.7524

Information Retrieval

Metric Value
cosine_accuracy@1 0.669
cosine_accuracy@3 0.8024
cosine_accuracy@5 0.8444
cosine_accuracy@10 0.893
cosine_precision@1 0.669
cosine_precision@3 0.2675
cosine_precision@5 0.1689
cosine_precision@10 0.0893
cosine_recall@1 0.669
cosine_recall@3 0.8024
cosine_recall@5 0.8444
cosine_recall@10 0.893
cosine_ndcg@10 0.7806
cosine_mrr@10 0.7446
cosine_map@100 0.7484

Information Retrieval

Metric Value
cosine_accuracy@1 0.6624
cosine_accuracy@3 0.7933
cosine_accuracy@5 0.8335
cosine_accuracy@10 0.8832
cosine_precision@1 0.6624
cosine_precision@3 0.2644
cosine_precision@5 0.1667
cosine_precision@10 0.0883
cosine_recall@1 0.6624
cosine_recall@3 0.7933
cosine_recall@5 0.8335
cosine_recall@10 0.8832
cosine_ndcg@10 0.7726
cosine_mrr@10 0.7372
cosine_map@100 0.7413

Information Retrieval

Metric Value
cosine_accuracy@1 0.6419
cosine_accuracy@3 0.7698
cosine_accuracy@5 0.8132
cosine_accuracy@10 0.8629
cosine_precision@1 0.6419
cosine_precision@3 0.2566
cosine_precision@5 0.1626
cosine_precision@10 0.0863
cosine_recall@1 0.6419
cosine_recall@3 0.7698
cosine_recall@5 0.8132
cosine_recall@10 0.8629
cosine_ndcg@10 0.7522
cosine_mrr@10 0.7168
cosine_map@100 0.7217

Information Retrieval

Metric Value
cosine_accuracy@1 0.5902
cosine_accuracy@3 0.7241
cosine_accuracy@5 0.7662
cosine_accuracy@10 0.8186
cosine_precision@1 0.5902
cosine_precision@3 0.2414
cosine_precision@5 0.1532
cosine_precision@10 0.0819
cosine_recall@1 0.5902
cosine_recall@3 0.7241
cosine_recall@5 0.7662
cosine_recall@10 0.8186
cosine_ndcg@10 0.7039
cosine_mrr@10 0.6674
cosine_map@100 0.6732

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.7273 1 0.6718 0.7044 0.7160 0.6086 0.7194
1.4545 2 0.6897 0.7192 0.7298 0.6329 0.7314
2.9091 4 0.7051 0.7292 0.7387 0.6504 0.7409
0.7273 1 0.7051 0.7292 0.7387 0.6504 0.7409
1.4545 2 0.7148 0.7366 0.7446 0.6636 0.7473
2.9091 4 0.7217 0.7413 0.7484 0.6732 0.7524
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}