File size: 25,243 Bytes
177a6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Goodwill arising from the acquisition of Xilinx was valued at $22,784
    million, attributed mainly to increased synergies expected from the integration
    of Xilinx into the Company's Embedded and Data Center segments.
  sentences:
  - What growth strategy does lululemon plan to employ for their operations in China
    Mainland?
  - What was the fair value of the goodwill generated from the acquisition of Xilinx?
  - How did the products gross margin percentage change from 2022 to 2023?
- source_sentence: In 2023, UnitedHealthcare's regulated subsidiaries paid $8.0 billion
    in dividends to their parent companies.
  sentences:
  - What amount did UnitedHealthcare's regulated subsidiaries pay as dividends to
    their parent companies in 2023?
  - What initiative does the Basel, Rotterdam and Stockholm Conventions focus on?
  - What is the primary target of Palantir's customer acquisition strategy?
- source_sentence: These assumptions about future disposition of inventory are inherently
    uncertain and changes in our estimates and assumptions may cause us to realize
    material write-downs in the future.
  sentences:
  - How did the return on average common stockholders’ equity (GAAP) change from 2021
    to 2023?
  - What is the effect of changes in inventory estimates on the company's financial
    statements?
  - What is the principal business experience of David M. Chojnowski before his current
    role as Senior Vice President and Controller?
- source_sentence: During the years ended December 31, 2021, 2022 and 2023, the weighted-average
    fair value of stock options granted under the Plans was $96.50, $79.75 and $65.22
    per share, respectively.
  sentences:
  - What was the weighted-average grant-date fair value of stock options granted in
    2021, 2022, and 2023?
  - What major weather events contributed to the increase in losses reported in 2023?
  - What is the V2MOM, and how is it used within the company?
- source_sentence: During fiscal year 2023, we repurchased 10.4 million shares for
    approximately $1,295 million.
  sentences:
  - How much does Kroger plan to invest in training its associates in 2023?
  - What total amount was spent on share repurchases during fiscal year 2023?
  - What judicial decision occurred in August 2023 regarding the antitrust lawsuits
    against the airlines?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6742857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8052380952380952
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8458730158730159
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8933333333333333
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6742857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26841269841269844
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16917460317460317
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08933333333333332
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6742857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8052380952380952
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8458730158730159
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8933333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7837644898436449
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7486834215167553
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7524444605977678
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.669047619047619
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8023809523809524
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8444444444444444
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.893015873015873
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.669047619047619
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26746031746031745
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1688888888888889
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08930158730158728
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.669047619047619
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8023809523809524
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8444444444444444
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.893015873015873
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7805515576068588
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.744609410430839
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7483879357643801
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6623809523809524
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7933333333333333
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8334920634920635
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8831746031746032
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6623809523809524
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2644444444444444
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16669841269841268
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08831746031746031
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6623809523809524
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7933333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8334920634920635
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8831746031746032
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.772554826031694
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7372027588813304
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7413385015201707
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6419047619047619
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7698412698412699
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8131746031746032
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8628571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6419047619047619
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2566137566137566
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16263492063492063
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08628571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6419047619047619
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7698412698412699
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8131746031746032
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8628571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7522219583193863
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7168462459057695
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7216902902285594
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.5901587301587301
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7241269841269842
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7661904761904762
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8185714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5901587301587301
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24137566137566135
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15323809523809523
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08185714285714285
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5901587301587301
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7241269841269842
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7661904761904762
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8185714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7039266407844053
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6673720710506443
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6731612260450521
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test")
# Run inference
sentences = [
    'During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million.',
    'What total amount was spent on share repurchases during fiscal year 2023?',
    'What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6743     |
| cosine_accuracy@3   | 0.8052     |
| cosine_accuracy@5   | 0.8459     |
| cosine_accuracy@10  | 0.8933     |
| cosine_precision@1  | 0.6743     |
| cosine_precision@3  | 0.2684     |
| cosine_precision@5  | 0.1692     |
| cosine_precision@10 | 0.0893     |
| cosine_recall@1     | 0.6743     |
| cosine_recall@3     | 0.8052     |
| cosine_recall@5     | 0.8459     |
| cosine_recall@10    | 0.8933     |
| cosine_ndcg@10      | 0.7838     |
| cosine_mrr@10       | 0.7487     |
| **cosine_map@100**  | **0.7524** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.669      |
| cosine_accuracy@3   | 0.8024     |
| cosine_accuracy@5   | 0.8444     |
| cosine_accuracy@10  | 0.893      |
| cosine_precision@1  | 0.669      |
| cosine_precision@3  | 0.2675     |
| cosine_precision@5  | 0.1689     |
| cosine_precision@10 | 0.0893     |
| cosine_recall@1     | 0.669      |
| cosine_recall@3     | 0.8024     |
| cosine_recall@5     | 0.8444     |
| cosine_recall@10    | 0.893      |
| cosine_ndcg@10      | 0.7806     |
| cosine_mrr@10       | 0.7446     |
| **cosine_map@100**  | **0.7484** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6624     |
| cosine_accuracy@3   | 0.7933     |
| cosine_accuracy@5   | 0.8335     |
| cosine_accuracy@10  | 0.8832     |
| cosine_precision@1  | 0.6624     |
| cosine_precision@3  | 0.2644     |
| cosine_precision@5  | 0.1667     |
| cosine_precision@10 | 0.0883     |
| cosine_recall@1     | 0.6624     |
| cosine_recall@3     | 0.7933     |
| cosine_recall@5     | 0.8335     |
| cosine_recall@10    | 0.8832     |
| cosine_ndcg@10      | 0.7726     |
| cosine_mrr@10       | 0.7372     |
| **cosine_map@100**  | **0.7413** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6419     |
| cosine_accuracy@3   | 0.7698     |
| cosine_accuracy@5   | 0.8132     |
| cosine_accuracy@10  | 0.8629     |
| cosine_precision@1  | 0.6419     |
| cosine_precision@3  | 0.2566     |
| cosine_precision@5  | 0.1626     |
| cosine_precision@10 | 0.0863     |
| cosine_recall@1     | 0.6419     |
| cosine_recall@3     | 0.7698     |
| cosine_recall@5     | 0.8132     |
| cosine_recall@10    | 0.8629     |
| cosine_ndcg@10      | 0.7522     |
| cosine_mrr@10       | 0.7168     |
| **cosine_map@100**  | **0.7217** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5902     |
| cosine_accuracy@3   | 0.7241     |
| cosine_accuracy@5   | 0.7662     |
| cosine_accuracy@10  | 0.8186     |
| cosine_precision@1  | 0.5902     |
| cosine_precision@3  | 0.2414     |
| cosine_precision@5  | 0.1532     |
| cosine_precision@10 | 0.0819     |
| cosine_recall@1     | 0.5902     |
| cosine_recall@3     | 0.7241     |
| cosine_recall@5     | 0.7662     |
| cosine_recall@10    | 0.8186     |
| cosine_ndcg@10      | 0.7039     |
| cosine_mrr@10       | 0.6674     |
| **cosine_map@100**  | **0.6732** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.7273     | 1     | 0.6718                 | 0.7044                 | 0.7160                 | 0.6086                | 0.7194                 |
| 1.4545     | 2     | 0.6897                 | 0.7192                 | 0.7298                 | 0.6329                | 0.7314                 |
| **2.9091** | **4** | **0.7051**             | **0.7292**             | **0.7387**             | **0.6504**            | **0.7409**             |
| 0.7273     | 1     | 0.7051                 | 0.7292                 | 0.7387                 | 0.6504                | 0.7409                 |
| 1.4545     | 2     | 0.7148                 | 0.7366                 | 0.7446                 | 0.6636                | 0.7473                 |
| **2.9091** | **4** | **0.7217**             | **0.7413**             | **0.7484**             | **0.6732**            | **0.7524**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->