metadata
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
results: []
segformer-b0-finetuned-segments-toolwear
This model is a fine-tuned version of nvidia/mit-b0 on the HorcruxNo13/toolwear_segmentsai dataset. It achieves the following results on the evaluation set:
- Loss: 0.1285
- Mean Iou: 0.3499
- Mean Accuracy: 0.6998
- Overall Accuracy: 0.6998
- Accuracy Unlabeled: nan
- Accuracy Tool: nan
- Accuracy Wear: 0.6998
- Iou Unlabeled: 0.0
- Iou Tool: nan
- Iou Wear: 0.6998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8959 | 1.82 | 20 | 0.8677 | 0.4048 | 0.8097 | 0.8097 | nan | nan | 0.8097 | 0.0 | nan | 0.8097 |
0.6658 | 3.64 | 40 | 0.6010 | 0.3734 | 0.7468 | 0.7468 | nan | nan | 0.7468 | 0.0 | nan | 0.7468 |
0.4389 | 5.45 | 60 | 0.4941 | 0.3634 | 0.7269 | 0.7269 | nan | nan | 0.7269 | 0.0 | nan | 0.7269 |
0.3531 | 7.27 | 80 | 0.4390 | 0.3508 | 0.7015 | 0.7015 | nan | nan | 0.7015 | 0.0 | nan | 0.7015 |
0.3408 | 9.09 | 100 | 0.3753 | 0.3340 | 0.6679 | 0.6679 | nan | nan | 0.6679 | 0.0 | nan | 0.6679 |
0.3266 | 10.91 | 120 | 0.3769 | 0.3761 | 0.7521 | 0.7521 | nan | nan | 0.7521 | 0.0 | nan | 0.7521 |
0.2791 | 12.73 | 140 | 0.3491 | 0.3918 | 0.7835 | 0.7835 | nan | nan | 0.7835 | 0.0 | nan | 0.7835 |
0.2066 | 14.55 | 160 | 0.2705 | 0.3491 | 0.6981 | 0.6981 | nan | nan | 0.6981 | 0.0 | nan | 0.6981 |
0.161 | 16.36 | 180 | 0.2398 | 0.3283 | 0.6567 | 0.6567 | nan | nan | 0.6567 | 0.0 | nan | 0.6567 |
0.1558 | 18.18 | 200 | 0.2599 | 0.4021 | 0.8042 | 0.8042 | nan | nan | 0.8042 | 0.0 | nan | 0.8042 |
0.128 | 20.0 | 220 | 0.2163 | 0.3387 | 0.6775 | 0.6775 | nan | nan | 0.6775 | 0.0 | nan | 0.6775 |
0.11 | 21.82 | 240 | 0.2019 | 0.3599 | 0.7199 | 0.7199 | nan | nan | 0.7199 | 0.0 | nan | 0.7199 |
0.1101 | 23.64 | 260 | 0.1905 | 0.3620 | 0.7240 | 0.7240 | nan | nan | 0.7240 | 0.0 | nan | 0.7240 |
0.0874 | 25.45 | 280 | 0.1708 | 0.3138 | 0.6276 | 0.6276 | nan | nan | 0.6276 | 0.0 | nan | 0.6276 |
0.0815 | 27.27 | 300 | 0.1505 | 0.3191 | 0.6382 | 0.6382 | nan | nan | 0.6382 | 0.0 | nan | 0.6382 |
0.082 | 29.09 | 320 | 0.1641 | 0.3520 | 0.7040 | 0.7040 | nan | nan | 0.7040 | 0.0 | nan | 0.7040 |
0.0694 | 30.91 | 340 | 0.1456 | 0.3322 | 0.6644 | 0.6644 | nan | nan | 0.6644 | 0.0 | nan | 0.6644 |
0.072 | 32.73 | 360 | 0.1416 | 0.3445 | 0.6889 | 0.6889 | nan | nan | 0.6889 | 0.0 | nan | 0.6889 |
0.065 | 34.55 | 380 | 0.1348 | 0.3407 | 0.6814 | 0.6814 | nan | nan | 0.6814 | 0.0 | nan | 0.6814 |
0.0696 | 36.36 | 400 | 0.1372 | 0.3285 | 0.6569 | 0.6569 | nan | nan | 0.6569 | 0.0 | nan | 0.6569 |
0.0666 | 38.18 | 420 | 0.1430 | 0.3636 | 0.7272 | 0.7272 | nan | nan | 0.7272 | 0.0 | nan | 0.7272 |
0.0601 | 40.0 | 440 | 0.1222 | 0.3211 | 0.6423 | 0.6423 | nan | nan | 0.6423 | 0.0 | nan | 0.6423 |
0.0515 | 41.82 | 460 | 0.1225 | 0.3286 | 0.6572 | 0.6572 | nan | nan | 0.6572 | 0.0 | nan | 0.6572 |
0.0558 | 43.64 | 480 | 0.1229 | 0.3375 | 0.6750 | 0.6750 | nan | nan | 0.6750 | 0.0 | nan | 0.6750 |
0.07 | 45.45 | 500 | 0.1111 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 |
0.0606 | 47.27 | 520 | 0.1251 | 0.3391 | 0.6782 | 0.6782 | nan | nan | 0.6782 | 0.0 | nan | 0.6782 |
0.0561 | 49.09 | 540 | 0.1285 | 0.3499 | 0.6998 | 0.6998 | nan | nan | 0.6998 | 0.0 | nan | 0.6998 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3