HorcruxNo13 commited on
Commit
bc85fee
1 Parent(s): 3cd1bd0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -21
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  license: other
3
  tags:
 
 
4
  - generated_from_trainer
5
  model-index:
6
  - name: segformer-b0-finetuned-segments-toolwear
@@ -12,18 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # segformer-b0-finetuned-segments-toolwear
14
 
15
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.2168
18
- - Mean Iou: 0.3007
19
- - Mean Accuracy: 0.6014
20
- - Overall Accuracy: 0.6014
21
  - Accuracy Unlabeled: nan
22
  - Accuracy Tool: nan
23
- - Accuracy Wear: 0.6014
24
  - Iou Unlabeled: 0.0
25
  - Iou Tool: nan
26
- - Iou Wear: 0.6014
27
 
28
  ## Model description
29
 
@@ -48,25 +50,39 @@ The following hyperparameters were used during training:
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 25
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
57
- | 0.9147 | 1.82 | 20 | 0.9308 | 0.3010 | 0.9029 | 0.9029 | nan | nan | 0.9029 | 0.0 | 0.0 | 0.9029 |
58
- | 0.6788 | 3.64 | 40 | 0.6521 | 0.2589 | 0.7768 | 0.7768 | nan | nan | 0.7768 | 0.0 | 0.0 | 0.7768 |
59
- | 0.4559 | 5.45 | 60 | 0.4600 | 0.2663 | 0.7989 | 0.7989 | nan | nan | 0.7989 | 0.0 | 0.0 | 0.7989 |
60
- | 0.3799 | 7.27 | 80 | 0.3767 | 0.2061 | 0.6182 | 0.6182 | nan | nan | 0.6182 | 0.0 | 0.0 | 0.6182 |
61
- | 0.4438 | 9.09 | 100 | 0.3259 | 0.3479 | 0.6958 | 0.6958 | nan | nan | 0.6958 | 0.0 | nan | 0.6958 |
62
- | 0.3534 | 10.91 | 120 | 0.3008 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 |
63
- | 0.3332 | 12.73 | 140 | 0.2805 | 0.3631 | 0.7261 | 0.7261 | nan | nan | 0.7261 | 0.0 | nan | 0.7261 |
64
- | 0.2543 | 14.55 | 160 | 0.2659 | 0.2927 | 0.5853 | 0.5853 | nan | nan | 0.5853 | 0.0 | nan | 0.5853 |
65
- | 0.2746 | 16.36 | 180 | 0.2324 | 0.2724 | 0.5449 | 0.5449 | nan | nan | 0.5449 | 0.0 | nan | 0.5449 |
66
- | 0.2532 | 18.18 | 200 | 0.2409 | 0.3597 | 0.7194 | 0.7194 | nan | nan | 0.7194 | 0.0 | nan | 0.7194 |
67
- | 0.2353 | 20.0 | 220 | 0.2369 | 0.3070 | 0.6139 | 0.6139 | nan | nan | 0.6139 | 0.0 | nan | 0.6139 |
68
- | 0.2192 | 21.82 | 240 | 0.2210 | 0.3041 | 0.6083 | 0.6083 | nan | nan | 0.6083 | 0.0 | nan | 0.6083 |
69
- | 0.2469 | 23.64 | 260 | 0.2168 | 0.3007 | 0.6014 | 0.6014 | nan | nan | 0.6014 | 0.0 | nan | 0.6014 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
 
72
  ### Framework versions
 
1
  ---
2
  license: other
3
  tags:
4
+ - vision
5
+ - image-segmentation
6
  - generated_from_trainer
7
  model-index:
8
  - name: segformer-b0-finetuned-segments-toolwear
 
14
 
15
  # segformer-b0-finetuned-segments-toolwear
16
 
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.1285
20
+ - Mean Iou: 0.3499
21
+ - Mean Accuracy: 0.6998
22
+ - Overall Accuracy: 0.6998
23
  - Accuracy Unlabeled: nan
24
  - Accuracy Tool: nan
25
+ - Accuracy Wear: 0.6998
26
  - Iou Unlabeled: 0.0
27
  - Iou Tool: nan
28
+ - Iou Wear: 0.6998
29
 
30
  ## Model description
31
 
 
50
  - seed: 42
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 50
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
59
+ | 0.8959 | 1.82 | 20 | 0.8677 | 0.4048 | 0.8097 | 0.8097 | nan | nan | 0.8097 | 0.0 | nan | 0.8097 |
60
+ | 0.6658 | 3.64 | 40 | 0.6010 | 0.3734 | 0.7468 | 0.7468 | nan | nan | 0.7468 | 0.0 | nan | 0.7468 |
61
+ | 0.4389 | 5.45 | 60 | 0.4941 | 0.3634 | 0.7269 | 0.7269 | nan | nan | 0.7269 | 0.0 | nan | 0.7269 |
62
+ | 0.3531 | 7.27 | 80 | 0.4390 | 0.3508 | 0.7015 | 0.7015 | nan | nan | 0.7015 | 0.0 | nan | 0.7015 |
63
+ | 0.3408 | 9.09 | 100 | 0.3753 | 0.3340 | 0.6679 | 0.6679 | nan | nan | 0.6679 | 0.0 | nan | 0.6679 |
64
+ | 0.3266 | 10.91 | 120 | 0.3769 | 0.3761 | 0.7521 | 0.7521 | nan | nan | 0.7521 | 0.0 | nan | 0.7521 |
65
+ | 0.2791 | 12.73 | 140 | 0.3491 | 0.3918 | 0.7835 | 0.7835 | nan | nan | 0.7835 | 0.0 | nan | 0.7835 |
66
+ | 0.2066 | 14.55 | 160 | 0.2705 | 0.3491 | 0.6981 | 0.6981 | nan | nan | 0.6981 | 0.0 | nan | 0.6981 |
67
+ | 0.161 | 16.36 | 180 | 0.2398 | 0.3283 | 0.6567 | 0.6567 | nan | nan | 0.6567 | 0.0 | nan | 0.6567 |
68
+ | 0.1558 | 18.18 | 200 | 0.2599 | 0.4021 | 0.8042 | 0.8042 | nan | nan | 0.8042 | 0.0 | nan | 0.8042 |
69
+ | 0.128 | 20.0 | 220 | 0.2163 | 0.3387 | 0.6775 | 0.6775 | nan | nan | 0.6775 | 0.0 | nan | 0.6775 |
70
+ | 0.11 | 21.82 | 240 | 0.2019 | 0.3599 | 0.7199 | 0.7199 | nan | nan | 0.7199 | 0.0 | nan | 0.7199 |
71
+ | 0.1101 | 23.64 | 260 | 0.1905 | 0.3620 | 0.7240 | 0.7240 | nan | nan | 0.7240 | 0.0 | nan | 0.7240 |
72
+ | 0.0874 | 25.45 | 280 | 0.1708 | 0.3138 | 0.6276 | 0.6276 | nan | nan | 0.6276 | 0.0 | nan | 0.6276 |
73
+ | 0.0815 | 27.27 | 300 | 0.1505 | 0.3191 | 0.6382 | 0.6382 | nan | nan | 0.6382 | 0.0 | nan | 0.6382 |
74
+ | 0.082 | 29.09 | 320 | 0.1641 | 0.3520 | 0.7040 | 0.7040 | nan | nan | 0.7040 | 0.0 | nan | 0.7040 |
75
+ | 0.0694 | 30.91 | 340 | 0.1456 | 0.3322 | 0.6644 | 0.6644 | nan | nan | 0.6644 | 0.0 | nan | 0.6644 |
76
+ | 0.072 | 32.73 | 360 | 0.1416 | 0.3445 | 0.6889 | 0.6889 | nan | nan | 0.6889 | 0.0 | nan | 0.6889 |
77
+ | 0.065 | 34.55 | 380 | 0.1348 | 0.3407 | 0.6814 | 0.6814 | nan | nan | 0.6814 | 0.0 | nan | 0.6814 |
78
+ | 0.0696 | 36.36 | 400 | 0.1372 | 0.3285 | 0.6569 | 0.6569 | nan | nan | 0.6569 | 0.0 | nan | 0.6569 |
79
+ | 0.0666 | 38.18 | 420 | 0.1430 | 0.3636 | 0.7272 | 0.7272 | nan | nan | 0.7272 | 0.0 | nan | 0.7272 |
80
+ | 0.0601 | 40.0 | 440 | 0.1222 | 0.3211 | 0.6423 | 0.6423 | nan | nan | 0.6423 | 0.0 | nan | 0.6423 |
81
+ | 0.0515 | 41.82 | 460 | 0.1225 | 0.3286 | 0.6572 | 0.6572 | nan | nan | 0.6572 | 0.0 | nan | 0.6572 |
82
+ | 0.0558 | 43.64 | 480 | 0.1229 | 0.3375 | 0.6750 | 0.6750 | nan | nan | 0.6750 | 0.0 | nan | 0.6750 |
83
+ | 0.07 | 45.45 | 500 | 0.1111 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 |
84
+ | 0.0606 | 47.27 | 520 | 0.1251 | 0.3391 | 0.6782 | 0.6782 | nan | nan | 0.6782 | 0.0 | nan | 0.6782 |
85
+ | 0.0561 | 49.09 | 540 | 0.1285 | 0.3499 | 0.6998 | 0.6998 | nan | nan | 0.6998 | 0.0 | nan | 0.6998 |
86
 
87
 
88
  ### Framework versions