File size: 6,839 Bytes
b3fd691
 
 
bc85fee
 
b3fd691
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
bc85fee
 
 
 
b3fd691
d344718
bc85fee
b3fd691
d344718
bc85fee
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
d344718
b3fd691
bc85fee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1285
- Mean Iou: 0.3499
- Mean Accuracy: 0.6998
- Overall Accuracy: 0.6998
- Accuracy Unlabeled: nan
- Accuracy Tool: nan
- Accuracy Wear: 0.6998
- Iou Unlabeled: 0.0
- Iou Tool: nan
- Iou Wear: 0.6998

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
| 0.8959        | 1.82  | 20   | 0.8677          | 0.4048   | 0.8097        | 0.8097           | nan                | nan           | 0.8097        | 0.0           | nan      | 0.8097   |
| 0.6658        | 3.64  | 40   | 0.6010          | 0.3734   | 0.7468        | 0.7468           | nan                | nan           | 0.7468        | 0.0           | nan      | 0.7468   |
| 0.4389        | 5.45  | 60   | 0.4941          | 0.3634   | 0.7269        | 0.7269           | nan                | nan           | 0.7269        | 0.0           | nan      | 0.7269   |
| 0.3531        | 7.27  | 80   | 0.4390          | 0.3508   | 0.7015        | 0.7015           | nan                | nan           | 0.7015        | 0.0           | nan      | 0.7015   |
| 0.3408        | 9.09  | 100  | 0.3753          | 0.3340   | 0.6679        | 0.6679           | nan                | nan           | 0.6679        | 0.0           | nan      | 0.6679   |
| 0.3266        | 10.91 | 120  | 0.3769          | 0.3761   | 0.7521        | 0.7521           | nan                | nan           | 0.7521        | 0.0           | nan      | 0.7521   |
| 0.2791        | 12.73 | 140  | 0.3491          | 0.3918   | 0.7835        | 0.7835           | nan                | nan           | 0.7835        | 0.0           | nan      | 0.7835   |
| 0.2066        | 14.55 | 160  | 0.2705          | 0.3491   | 0.6981        | 0.6981           | nan                | nan           | 0.6981        | 0.0           | nan      | 0.6981   |
| 0.161         | 16.36 | 180  | 0.2398          | 0.3283   | 0.6567        | 0.6567           | nan                | nan           | 0.6567        | 0.0           | nan      | 0.6567   |
| 0.1558        | 18.18 | 200  | 0.2599          | 0.4021   | 0.8042        | 0.8042           | nan                | nan           | 0.8042        | 0.0           | nan      | 0.8042   |
| 0.128         | 20.0  | 220  | 0.2163          | 0.3387   | 0.6775        | 0.6775           | nan                | nan           | 0.6775        | 0.0           | nan      | 0.6775   |
| 0.11          | 21.82 | 240  | 0.2019          | 0.3599   | 0.7199        | 0.7199           | nan                | nan           | 0.7199        | 0.0           | nan      | 0.7199   |
| 0.1101        | 23.64 | 260  | 0.1905          | 0.3620   | 0.7240        | 0.7240           | nan                | nan           | 0.7240        | 0.0           | nan      | 0.7240   |
| 0.0874        | 25.45 | 280  | 0.1708          | 0.3138   | 0.6276        | 0.6276           | nan                | nan           | 0.6276        | 0.0           | nan      | 0.6276   |
| 0.0815        | 27.27 | 300  | 0.1505          | 0.3191   | 0.6382        | 0.6382           | nan                | nan           | 0.6382        | 0.0           | nan      | 0.6382   |
| 0.082         | 29.09 | 320  | 0.1641          | 0.3520   | 0.7040        | 0.7040           | nan                | nan           | 0.7040        | 0.0           | nan      | 0.7040   |
| 0.0694        | 30.91 | 340  | 0.1456          | 0.3322   | 0.6644        | 0.6644           | nan                | nan           | 0.6644        | 0.0           | nan      | 0.6644   |
| 0.072         | 32.73 | 360  | 0.1416          | 0.3445   | 0.6889        | 0.6889           | nan                | nan           | 0.6889        | 0.0           | nan      | 0.6889   |
| 0.065         | 34.55 | 380  | 0.1348          | 0.3407   | 0.6814        | 0.6814           | nan                | nan           | 0.6814        | 0.0           | nan      | 0.6814   |
| 0.0696        | 36.36 | 400  | 0.1372          | 0.3285   | 0.6569        | 0.6569           | nan                | nan           | 0.6569        | 0.0           | nan      | 0.6569   |
| 0.0666        | 38.18 | 420  | 0.1430          | 0.3636   | 0.7272        | 0.7272           | nan                | nan           | 0.7272        | 0.0           | nan      | 0.7272   |
| 0.0601        | 40.0  | 440  | 0.1222          | 0.3211   | 0.6423        | 0.6423           | nan                | nan           | 0.6423        | 0.0           | nan      | 0.6423   |
| 0.0515        | 41.82 | 460  | 0.1225          | 0.3286   | 0.6572        | 0.6572           | nan                | nan           | 0.6572        | 0.0           | nan      | 0.6572   |
| 0.0558        | 43.64 | 480  | 0.1229          | 0.3375   | 0.6750        | 0.6750           | nan                | nan           | 0.6750        | 0.0           | nan      | 0.6750   |
| 0.07          | 45.45 | 500  | 0.1111          | 0.3057   | 0.6114        | 0.6114           | nan                | nan           | 0.6114        | 0.0           | nan      | 0.6114   |
| 0.0606        | 47.27 | 520  | 0.1251          | 0.3391   | 0.6782        | 0.6782           | nan                | nan           | 0.6782        | 0.0           | nan      | 0.6782   |
| 0.0561        | 49.09 | 540  | 0.1285          | 0.3499   | 0.6998        | 0.6998           | nan                | nan           | 0.6998        | 0.0           | nan      | 0.6998   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3