HorcruxNo13 commited on
Commit
b3fd691
·
1 Parent(s): 1e9843d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b0-finetuned-segments-toolwear
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b0-finetuned-segments-toolwear
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_cleaned dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1501
20
+ - Mean Iou: 0.4560
21
+ - Mean Accuracy: 0.9040
22
+ - Overall Accuracy: 0.9643
23
+ - Accuracy Unlabeled: nan
24
+ - Accuracy Wear: 0.8404
25
+ - Accuracy Tool: 0.9675
26
+ - Iou Unlabeled: 0.0
27
+ - Iou Wear: 0.4034
28
+ - Iou Tool: 0.9646
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 6e-05
48
+ - train_batch_size: 2
49
+ - eval_batch_size: 2
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 25
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Accuracy Tool | Iou Unlabeled | Iou Wear | Iou Tool |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
59
+ | 0.4464 | 1.82 | 20 | 0.6527 | 0.3325 | 0.5116 | 0.9740 | nan | 0.0242 | 0.9990 | 0.0 | 0.0235 | 0.9740 |
60
+ | 0.3069 | 3.64 | 40 | 0.3300 | 0.4958 | 0.8505 | 0.9661 | nan | 0.7288 | 0.9723 | 0.0 | 0.5213 | 0.9662 |
61
+ | 0.276 | 5.45 | 60 | 0.2597 | 0.4089 | 0.9324 | 0.9368 | nan | 0.9278 | 0.9370 | 0.0 | 0.2909 | 0.9358 |
62
+ | 0.2648 | 7.27 | 80 | 0.2321 | 0.4338 | 0.8839 | 0.9567 | nan | 0.8071 | 0.9607 | 0.0 | 0.3441 | 0.9572 |
63
+ | 0.245 | 9.09 | 100 | 0.2298 | 0.4021 | 0.9265 | 0.9359 | nan | 0.9167 | 0.9364 | 0.0 | 0.2715 | 0.9348 |
64
+ | 0.2047 | 10.91 | 120 | 0.1897 | 0.4379 | 0.8814 | 0.9446 | nan | 0.8147 | 0.9480 | 0.0 | 0.3684 | 0.9455 |
65
+ | 0.1695 | 12.73 | 140 | 0.1681 | 0.4561 | 0.8444 | 0.9636 | nan | 0.7188 | 0.9701 | 0.0 | 0.4026 | 0.9657 |
66
+ | 0.1556 | 14.55 | 160 | 0.1741 | 0.4289 | 0.9060 | 0.9494 | nan | 0.8603 | 0.9517 | 0.0 | 0.3372 | 0.9497 |
67
+ | 0.1435 | 16.36 | 180 | 0.1528 | 0.4746 | 0.8851 | 0.9679 | nan | 0.7978 | 0.9723 | 0.0 | 0.4549 | 0.9689 |
68
+ | 0.1208 | 18.18 | 200 | 0.1648 | 0.4379 | 0.9126 | 0.9577 | nan | 0.8650 | 0.9601 | 0.0 | 0.3560 | 0.9577 |
69
+ | 0.1425 | 20.0 | 220 | 0.1587 | 0.4451 | 0.9116 | 0.9576 | nan | 0.8631 | 0.9601 | 0.0 | 0.3774 | 0.9578 |
70
+ | 0.1124 | 21.82 | 240 | 0.1515 | 0.4291 | 0.9044 | 0.9491 | nan | 0.8574 | 0.9515 | 0.0 | 0.3380 | 0.9493 |
71
+ | 0.1509 | 23.64 | 260 | 0.1501 | 0.4560 | 0.9040 | 0.9643 | nan | 0.8404 | 0.9675 | 0.0 | 0.4034 | 0.9646 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.28.0
77
+ - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3