HorcruxNo13
commited on
Commit
·
b3fd691
1
Parent(s):
1e9843d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-segments-toolwear
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-segments-toolwear
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_cleaned dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1501
|
20 |
+
- Mean Iou: 0.4560
|
21 |
+
- Mean Accuracy: 0.9040
|
22 |
+
- Overall Accuracy: 0.9643
|
23 |
+
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Wear: 0.8404
|
25 |
+
- Accuracy Tool: 0.9675
|
26 |
+
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Wear: 0.4034
|
28 |
+
- Iou Tool: 0.9646
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 6e-05
|
48 |
+
- train_batch_size: 2
|
49 |
+
- eval_batch_size: 2
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Wear | Accuracy Tool | Iou Unlabeled | Iou Wear | Iou Tool |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.4464 | 1.82 | 20 | 0.6527 | 0.3325 | 0.5116 | 0.9740 | nan | 0.0242 | 0.9990 | 0.0 | 0.0235 | 0.9740 |
|
60 |
+
| 0.3069 | 3.64 | 40 | 0.3300 | 0.4958 | 0.8505 | 0.9661 | nan | 0.7288 | 0.9723 | 0.0 | 0.5213 | 0.9662 |
|
61 |
+
| 0.276 | 5.45 | 60 | 0.2597 | 0.4089 | 0.9324 | 0.9368 | nan | 0.9278 | 0.9370 | 0.0 | 0.2909 | 0.9358 |
|
62 |
+
| 0.2648 | 7.27 | 80 | 0.2321 | 0.4338 | 0.8839 | 0.9567 | nan | 0.8071 | 0.9607 | 0.0 | 0.3441 | 0.9572 |
|
63 |
+
| 0.245 | 9.09 | 100 | 0.2298 | 0.4021 | 0.9265 | 0.9359 | nan | 0.9167 | 0.9364 | 0.0 | 0.2715 | 0.9348 |
|
64 |
+
| 0.2047 | 10.91 | 120 | 0.1897 | 0.4379 | 0.8814 | 0.9446 | nan | 0.8147 | 0.9480 | 0.0 | 0.3684 | 0.9455 |
|
65 |
+
| 0.1695 | 12.73 | 140 | 0.1681 | 0.4561 | 0.8444 | 0.9636 | nan | 0.7188 | 0.9701 | 0.0 | 0.4026 | 0.9657 |
|
66 |
+
| 0.1556 | 14.55 | 160 | 0.1741 | 0.4289 | 0.9060 | 0.9494 | nan | 0.8603 | 0.9517 | 0.0 | 0.3372 | 0.9497 |
|
67 |
+
| 0.1435 | 16.36 | 180 | 0.1528 | 0.4746 | 0.8851 | 0.9679 | nan | 0.7978 | 0.9723 | 0.0 | 0.4549 | 0.9689 |
|
68 |
+
| 0.1208 | 18.18 | 200 | 0.1648 | 0.4379 | 0.9126 | 0.9577 | nan | 0.8650 | 0.9601 | 0.0 | 0.3560 | 0.9577 |
|
69 |
+
| 0.1425 | 20.0 | 220 | 0.1587 | 0.4451 | 0.9116 | 0.9576 | nan | 0.8631 | 0.9601 | 0.0 | 0.3774 | 0.9578 |
|
70 |
+
| 0.1124 | 21.82 | 240 | 0.1515 | 0.4291 | 0.9044 | 0.9491 | nan | 0.8574 | 0.9515 | 0.0 | 0.3380 | 0.9493 |
|
71 |
+
| 0.1509 | 23.64 | 260 | 0.1501 | 0.4560 | 0.9040 | 0.9643 | nan | 0.8404 | 0.9675 | 0.0 | 0.4034 | 0.9646 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.28.0
|
77 |
+
- Pytorch 2.0.1+cu118
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|