File size: 9,604 Bytes
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
a110206
b3fd691
fc3d5ab
 
 
 
b3fd691
fc3d5ab
 
b3fd691
fc3d5ab
 
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
fc3d5ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
693ebf3
 
b3fd691
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1009
- Mean Iou: 0.2182
- Mean Accuracy: 0.4365
- Overall Accuracy: 0.4365
- Accuracy Unlabeled: nan
- Accuracy Tool: nan
- Accuracy Wear: 0.4365
- Iou Unlabeled: 0.0
- Iou Tool: nan
- Iou Wear: 0.4365

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
| 0.8747        | 1.18  | 20   | 0.9764          | 0.1788   | 0.5363        | 0.5363           | nan                | nan           | 0.5363        | 0.0           | 0.0      | 0.5363   |
| 0.6206        | 2.35  | 40   | 0.6394          | 0.1860   | 0.3719        | 0.3719           | nan                | nan           | 0.3719        | 0.0           | nan      | 0.3719   |
| 0.4963        | 3.53  | 60   | 0.4309          | 0.2230   | 0.4460        | 0.4460           | nan                | nan           | 0.4460        | 0.0           | nan      | 0.4460   |
| 0.3978        | 4.71  | 80   | 0.3839          | 0.3231   | 0.6463        | 0.6463           | nan                | nan           | 0.6463        | 0.0           | nan      | 0.6463   |
| 0.3171        | 5.88  | 100  | 0.3193          | 0.2653   | 0.5306        | 0.5306           | nan                | nan           | 0.5306        | 0.0           | nan      | 0.5306   |
| 0.3046        | 7.06  | 120  | 0.2760          | 0.1372   | 0.2745        | 0.2745           | nan                | nan           | 0.2745        | 0.0           | nan      | 0.2745   |
| 0.2558        | 8.24  | 140  | 0.2181          | 0.2549   | 0.5097        | 0.5097           | nan                | nan           | 0.5097        | 0.0           | nan      | 0.5097   |
| 0.225         | 9.41  | 160  | 0.1933          | 0.2673   | 0.5345        | 0.5345           | nan                | nan           | 0.5345        | 0.0           | nan      | 0.5345   |
| 0.1532        | 10.59 | 180  | 0.1735          | 0.2673   | 0.5346        | 0.5346           | nan                | nan           | 0.5346        | 0.0           | nan      | 0.5346   |
| 0.1505        | 11.76 | 200  | 0.1660          | 0.1857   | 0.3715        | 0.3715           | nan                | nan           | 0.3715        | 0.0           | nan      | 0.3715   |
| 0.1222        | 12.94 | 220  | 0.1641          | 0.1508   | 0.3016        | 0.3016           | nan                | nan           | 0.3016        | 0.0           | nan      | 0.3016   |
| 0.0921        | 14.12 | 240  | 0.1363          | 0.2869   | 0.5738        | 0.5738           | nan                | nan           | 0.5738        | 0.0           | nan      | 0.5738   |
| 0.0792        | 15.29 | 260  | 0.1300          | 0.2245   | 0.4491        | 0.4491           | nan                | nan           | 0.4491        | 0.0           | nan      | 0.4491   |
| 0.0804        | 16.47 | 280  | 0.1338          | 0.1910   | 0.3820        | 0.3820           | nan                | nan           | 0.3820        | 0.0           | nan      | 0.3820   |
| 0.0732        | 17.65 | 300  | 0.1118          | 0.2583   | 0.5166        | 0.5166           | nan                | nan           | 0.5166        | 0.0           | nan      | 0.5166   |
| 0.062         | 18.82 | 320  | 0.1102          | 0.2432   | 0.4864        | 0.4864           | nan                | nan           | 0.4864        | 0.0           | nan      | 0.4864   |
| 0.0582        | 20.0  | 340  | 0.1023          | 0.2547   | 0.5095        | 0.5095           | nan                | nan           | 0.5095        | 0.0           | nan      | 0.5095   |
| 0.056         | 21.18 | 360  | 0.1151          | 0.2111   | 0.4222        | 0.4222           | nan                | nan           | 0.4222        | 0.0           | nan      | 0.4222   |
| 0.0493        | 22.35 | 380  | 0.1126          | 0.2045   | 0.4089        | 0.4089           | nan                | nan           | 0.4089        | 0.0           | nan      | 0.4089   |
| 0.0633        | 23.53 | 400  | 0.1065          | 0.2220   | 0.4440        | 0.4440           | nan                | nan           | 0.4440        | 0.0           | nan      | 0.4440   |
| 0.0438        | 24.71 | 420  | 0.0987          | 0.2558   | 0.5116        | 0.5116           | nan                | nan           | 0.5116        | 0.0           | nan      | 0.5116   |
| 0.0451        | 25.88 | 440  | 0.1060          | 0.2326   | 0.4652        | 0.4652           | nan                | nan           | 0.4652        | 0.0           | nan      | 0.4652   |
| 0.0426        | 27.06 | 460  | 0.0981          | 0.2493   | 0.4986        | 0.4986           | nan                | nan           | 0.4986        | 0.0           | nan      | 0.4986   |
| 0.0397        | 28.24 | 480  | 0.0955          | 0.2485   | 0.4970        | 0.4970           | nan                | nan           | 0.4970        | 0.0           | nan      | 0.4970   |
| 0.0349        | 29.41 | 500  | 0.0991          | 0.2321   | 0.4641        | 0.4641           | nan                | nan           | 0.4641        | 0.0           | nan      | 0.4641   |
| 0.0337        | 30.59 | 520  | 0.1048          | 0.2111   | 0.4222        | 0.4222           | nan                | nan           | 0.4222        | 0.0           | nan      | 0.4222   |
| 0.0358        | 31.76 | 540  | 0.0870          | 0.2856   | 0.5712        | 0.5712           | nan                | nan           | 0.5712        | 0.0           | nan      | 0.5712   |
| 0.0322        | 32.94 | 560  | 0.1061          | 0.2085   | 0.4170        | 0.4170           | nan                | nan           | 0.4170        | 0.0           | nan      | 0.4170   |
| 0.028         | 34.12 | 580  | 0.0950          | 0.2399   | 0.4798        | 0.4798           | nan                | nan           | 0.4798        | 0.0           | nan      | 0.4798   |
| 0.0282        | 35.29 | 600  | 0.0880          | 0.2667   | 0.5335        | 0.5335           | nan                | nan           | 0.5335        | 0.0           | nan      | 0.5335   |
| 0.0266        | 36.47 | 620  | 0.0952          | 0.2457   | 0.4914        | 0.4914           | nan                | nan           | 0.4914        | 0.0           | nan      | 0.4914   |
| 0.0276        | 37.65 | 640  | 0.0994          | 0.2329   | 0.4658        | 0.4658           | nan                | nan           | 0.4658        | 0.0           | nan      | 0.4658   |
| 0.0306        | 38.82 | 660  | 0.0978          | 0.2314   | 0.4627        | 0.4627           | nan                | nan           | 0.4627        | 0.0           | nan      | 0.4627   |
| 0.0337        | 40.0  | 680  | 0.0949          | 0.2404   | 0.4809        | 0.4809           | nan                | nan           | 0.4809        | 0.0           | nan      | 0.4809   |
| 0.0243        | 41.18 | 700  | 0.0948          | 0.2382   | 0.4765        | 0.4765           | nan                | nan           | 0.4765        | 0.0           | nan      | 0.4765   |
| 0.0278        | 42.35 | 720  | 0.0978          | 0.2328   | 0.4655        | 0.4655           | nan                | nan           | 0.4655        | 0.0           | nan      | 0.4655   |
| 0.0317        | 43.53 | 740  | 0.0975          | 0.2337   | 0.4675        | 0.4675           | nan                | nan           | 0.4675        | 0.0           | nan      | 0.4675   |
| 0.0321        | 44.71 | 760  | 0.0981          | 0.2331   | 0.4663        | 0.4663           | nan                | nan           | 0.4663        | 0.0           | nan      | 0.4663   |
| 0.0318        | 45.88 | 780  | 0.0955          | 0.2374   | 0.4748        | 0.4748           | nan                | nan           | 0.4748        | 0.0           | nan      | 0.4748   |
| 0.0268        | 47.06 | 800  | 0.0963          | 0.2358   | 0.4715        | 0.4715           | nan                | nan           | 0.4715        | 0.0           | nan      | 0.4715   |
| 0.0268        | 48.24 | 820  | 0.1001          | 0.2229   | 0.4459        | 0.4459           | nan                | nan           | 0.4459        | 0.0           | nan      | 0.4459   |
| 0.0314        | 49.41 | 840  | 0.1009          | 0.2182   | 0.4365        | 0.4365           | nan                | nan           | 0.4365        | 0.0           | nan      | 0.4365   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.13.3