HorcruxNo13
commited on
Commit
•
fc3d5ab
1
Parent(s):
d5097a9
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,16 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
|
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou Tool:
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,50 +54,50 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
54 |
-
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_complete_wear dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1009
|
20 |
+
- Mean Iou: 0.2182
|
21 |
+
- Mean Accuracy: 0.4365
|
22 |
+
- Overall Accuracy: 0.4365
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: nan
|
25 |
+
- Accuracy Wear: 0.4365
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Tool: nan
|
28 |
+
- Iou Wear: 0.4365
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.8747 | 1.18 | 20 | 0.9764 | 0.1788 | 0.5363 | 0.5363 | nan | nan | 0.5363 | 0.0 | 0.0 | 0.5363 |
|
60 |
+
| 0.6206 | 2.35 | 40 | 0.6394 | 0.1860 | 0.3719 | 0.3719 | nan | nan | 0.3719 | 0.0 | nan | 0.3719 |
|
61 |
+
| 0.4963 | 3.53 | 60 | 0.4309 | 0.2230 | 0.4460 | 0.4460 | nan | nan | 0.4460 | 0.0 | nan | 0.4460 |
|
62 |
+
| 0.3978 | 4.71 | 80 | 0.3839 | 0.3231 | 0.6463 | 0.6463 | nan | nan | 0.6463 | 0.0 | nan | 0.6463 |
|
63 |
+
| 0.3171 | 5.88 | 100 | 0.3193 | 0.2653 | 0.5306 | 0.5306 | nan | nan | 0.5306 | 0.0 | nan | 0.5306 |
|
64 |
+
| 0.3046 | 7.06 | 120 | 0.2760 | 0.1372 | 0.2745 | 0.2745 | nan | nan | 0.2745 | 0.0 | nan | 0.2745 |
|
65 |
+
| 0.2558 | 8.24 | 140 | 0.2181 | 0.2549 | 0.5097 | 0.5097 | nan | nan | 0.5097 | 0.0 | nan | 0.5097 |
|
66 |
+
| 0.225 | 9.41 | 160 | 0.1933 | 0.2673 | 0.5345 | 0.5345 | nan | nan | 0.5345 | 0.0 | nan | 0.5345 |
|
67 |
+
| 0.1532 | 10.59 | 180 | 0.1735 | 0.2673 | 0.5346 | 0.5346 | nan | nan | 0.5346 | 0.0 | nan | 0.5346 |
|
68 |
+
| 0.1505 | 11.76 | 200 | 0.1660 | 0.1857 | 0.3715 | 0.3715 | nan | nan | 0.3715 | 0.0 | nan | 0.3715 |
|
69 |
+
| 0.1222 | 12.94 | 220 | 0.1641 | 0.1508 | 0.3016 | 0.3016 | nan | nan | 0.3016 | 0.0 | nan | 0.3016 |
|
70 |
+
| 0.0921 | 14.12 | 240 | 0.1363 | 0.2869 | 0.5738 | 0.5738 | nan | nan | 0.5738 | 0.0 | nan | 0.5738 |
|
71 |
+
| 0.0792 | 15.29 | 260 | 0.1300 | 0.2245 | 0.4491 | 0.4491 | nan | nan | 0.4491 | 0.0 | nan | 0.4491 |
|
72 |
+
| 0.0804 | 16.47 | 280 | 0.1338 | 0.1910 | 0.3820 | 0.3820 | nan | nan | 0.3820 | 0.0 | nan | 0.3820 |
|
73 |
+
| 0.0732 | 17.65 | 300 | 0.1118 | 0.2583 | 0.5166 | 0.5166 | nan | nan | 0.5166 | 0.0 | nan | 0.5166 |
|
74 |
+
| 0.062 | 18.82 | 320 | 0.1102 | 0.2432 | 0.4864 | 0.4864 | nan | nan | 0.4864 | 0.0 | nan | 0.4864 |
|
75 |
+
| 0.0582 | 20.0 | 340 | 0.1023 | 0.2547 | 0.5095 | 0.5095 | nan | nan | 0.5095 | 0.0 | nan | 0.5095 |
|
76 |
+
| 0.056 | 21.18 | 360 | 0.1151 | 0.2111 | 0.4222 | 0.4222 | nan | nan | 0.4222 | 0.0 | nan | 0.4222 |
|
77 |
+
| 0.0493 | 22.35 | 380 | 0.1126 | 0.2045 | 0.4089 | 0.4089 | nan | nan | 0.4089 | 0.0 | nan | 0.4089 |
|
78 |
+
| 0.0633 | 23.53 | 400 | 0.1065 | 0.2220 | 0.4440 | 0.4440 | nan | nan | 0.4440 | 0.0 | nan | 0.4440 |
|
79 |
+
| 0.0438 | 24.71 | 420 | 0.0987 | 0.2558 | 0.5116 | 0.5116 | nan | nan | 0.5116 | 0.0 | nan | 0.5116 |
|
80 |
+
| 0.0451 | 25.88 | 440 | 0.1060 | 0.2326 | 0.4652 | 0.4652 | nan | nan | 0.4652 | 0.0 | nan | 0.4652 |
|
81 |
+
| 0.0426 | 27.06 | 460 | 0.0981 | 0.2493 | 0.4986 | 0.4986 | nan | nan | 0.4986 | 0.0 | nan | 0.4986 |
|
82 |
+
| 0.0397 | 28.24 | 480 | 0.0955 | 0.2485 | 0.4970 | 0.4970 | nan | nan | 0.4970 | 0.0 | nan | 0.4970 |
|
83 |
+
| 0.0349 | 29.41 | 500 | 0.0991 | 0.2321 | 0.4641 | 0.4641 | nan | nan | 0.4641 | 0.0 | nan | 0.4641 |
|
84 |
+
| 0.0337 | 30.59 | 520 | 0.1048 | 0.2111 | 0.4222 | 0.4222 | nan | nan | 0.4222 | 0.0 | nan | 0.4222 |
|
85 |
+
| 0.0358 | 31.76 | 540 | 0.0870 | 0.2856 | 0.5712 | 0.5712 | nan | nan | 0.5712 | 0.0 | nan | 0.5712 |
|
86 |
+
| 0.0322 | 32.94 | 560 | 0.1061 | 0.2085 | 0.4170 | 0.4170 | nan | nan | 0.4170 | 0.0 | nan | 0.4170 |
|
87 |
+
| 0.028 | 34.12 | 580 | 0.0950 | 0.2399 | 0.4798 | 0.4798 | nan | nan | 0.4798 | 0.0 | nan | 0.4798 |
|
88 |
+
| 0.0282 | 35.29 | 600 | 0.0880 | 0.2667 | 0.5335 | 0.5335 | nan | nan | 0.5335 | 0.0 | nan | 0.5335 |
|
89 |
+
| 0.0266 | 36.47 | 620 | 0.0952 | 0.2457 | 0.4914 | 0.4914 | nan | nan | 0.4914 | 0.0 | nan | 0.4914 |
|
90 |
+
| 0.0276 | 37.65 | 640 | 0.0994 | 0.2329 | 0.4658 | 0.4658 | nan | nan | 0.4658 | 0.0 | nan | 0.4658 |
|
91 |
+
| 0.0306 | 38.82 | 660 | 0.0978 | 0.2314 | 0.4627 | 0.4627 | nan | nan | 0.4627 | 0.0 | nan | 0.4627 |
|
92 |
+
| 0.0337 | 40.0 | 680 | 0.0949 | 0.2404 | 0.4809 | 0.4809 | nan | nan | 0.4809 | 0.0 | nan | 0.4809 |
|
93 |
+
| 0.0243 | 41.18 | 700 | 0.0948 | 0.2382 | 0.4765 | 0.4765 | nan | nan | 0.4765 | 0.0 | nan | 0.4765 |
|
94 |
+
| 0.0278 | 42.35 | 720 | 0.0978 | 0.2328 | 0.4655 | 0.4655 | nan | nan | 0.4655 | 0.0 | nan | 0.4655 |
|
95 |
+
| 0.0317 | 43.53 | 740 | 0.0975 | 0.2337 | 0.4675 | 0.4675 | nan | nan | 0.4675 | 0.0 | nan | 0.4675 |
|
96 |
+
| 0.0321 | 44.71 | 760 | 0.0981 | 0.2331 | 0.4663 | 0.4663 | nan | nan | 0.4663 | 0.0 | nan | 0.4663 |
|
97 |
+
| 0.0318 | 45.88 | 780 | 0.0955 | 0.2374 | 0.4748 | 0.4748 | nan | nan | 0.4748 | 0.0 | nan | 0.4748 |
|
98 |
+
| 0.0268 | 47.06 | 800 | 0.0963 | 0.2358 | 0.4715 | 0.4715 | nan | nan | 0.4715 | 0.0 | nan | 0.4715 |
|
99 |
+
| 0.0268 | 48.24 | 820 | 0.1001 | 0.2229 | 0.4459 | 0.4459 | nan | nan | 0.4459 | 0.0 | nan | 0.4459 |
|
100 |
+
| 0.0314 | 49.41 | 840 | 0.1009 | 0.2182 | 0.4365 | 0.4365 | nan | nan | 0.4365 | 0.0 | nan | 0.4365 |
|
101 |
|
102 |
|
103 |
### Framework versions
|