File size: 6,784 Bytes
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
c28ef8c
b3fd691
d5c1a50
 
 
 
b3fd691
d5c1a50
 
b3fd691
d5c1a50
 
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
d344718
b3fd691
d5c1a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0517
- Mean Iou: 0.3741
- Mean Accuracy: 0.7482
- Overall Accuracy: 0.7482
- Accuracy Unlabeled: nan
- Accuracy Tool: nan
- Accuracy Wear: 0.7482
- Iou Unlabeled: 0.0
- Iou Tool: nan
- Iou Wear: 0.7482

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
| 0.8497        | 1.82  | 20   | 0.8647          | 0.4917   | 0.9834        | 0.9834           | nan                | nan           | 0.9834        | 0.0           | nan      | 0.9834   |
| 0.6095        | 3.64  | 40   | 0.5158          | 0.4642   | 0.9283        | 0.9283           | nan                | nan           | 0.9283        | 0.0           | nan      | 0.9283   |
| 0.4377        | 5.45  | 60   | 0.4200          | 0.4646   | 0.9291        | 0.9291           | nan                | nan           | 0.9291        | 0.0           | nan      | 0.9291   |
| 0.3756        | 7.27  | 80   | 0.3535          | 0.4780   | 0.9560        | 0.9560           | nan                | nan           | 0.9560        | 0.0           | nan      | 0.9560   |
| 0.4256        | 9.09  | 100  | 0.2951          | 0.4873   | 0.9746        | 0.9746           | nan                | nan           | 0.9746        | 0.0           | nan      | 0.9746   |
| 0.2748        | 10.91 | 120  | 0.2500          | 0.4817   | 0.9634        | 0.9634           | nan                | nan           | 0.9634        | 0.0           | nan      | 0.9634   |
| 0.2347        | 12.73 | 140  | 0.2000          | 0.4065   | 0.8129        | 0.8129           | nan                | nan           | 0.8129        | 0.0           | nan      | 0.8129   |
| 0.1777        | 14.55 | 160  | 0.1651          | 0.4340   | 0.8680        | 0.8680           | nan                | nan           | 0.8680        | 0.0           | nan      | 0.8680   |
| 0.186         | 16.36 | 180  | 0.1530          | 0.4211   | 0.8422        | 0.8422           | nan                | nan           | 0.8422        | 0.0           | nan      | 0.8422   |
| 0.1652        | 18.18 | 200  | 0.1143          | 0.4304   | 0.8608        | 0.8608           | nan                | nan           | 0.8608        | 0.0           | nan      | 0.8608   |
| 0.1227        | 20.0  | 220  | 0.1436          | 0.4838   | 0.9676        | 0.9676           | nan                | nan           | 0.9676        | 0.0           | nan      | 0.9676   |
| 0.1111        | 21.82 | 240  | 0.1014          | 0.3994   | 0.7988        | 0.7988           | nan                | nan           | 0.7988        | 0.0           | nan      | 0.7988   |
| 0.0989        | 23.64 | 260  | 0.0914          | 0.3574   | 0.7147        | 0.7147           | nan                | nan           | 0.7147        | 0.0           | nan      | 0.7147   |
| 0.1051        | 25.45 | 280  | 0.0871          | 0.2844   | 0.5689        | 0.5689           | nan                | nan           | 0.5689        | 0.0           | nan      | 0.5689   |
| 0.0975        | 27.27 | 300  | 0.0679          | 0.3893   | 0.7786        | 0.7786           | nan                | nan           | 0.7786        | 0.0           | nan      | 0.7786   |
| 0.0928        | 29.09 | 320  | 0.0723          | 0.4241   | 0.8483        | 0.8483           | nan                | nan           | 0.8483        | 0.0           | nan      | 0.8483   |
| 0.0673        | 30.91 | 340  | 0.0653          | 0.3628   | 0.7255        | 0.7255           | nan                | nan           | 0.7255        | 0.0           | nan      | 0.7255   |
| 0.0652        | 32.73 | 360  | 0.0641          | 0.4023   | 0.8047        | 0.8047           | nan                | nan           | 0.8047        | 0.0           | nan      | 0.8047   |
| 0.0912        | 34.55 | 380  | 0.0734          | 0.4453   | 0.8906        | 0.8906           | nan                | nan           | 0.8906        | 0.0           | nan      | 0.8906   |
| 0.0682        | 36.36 | 400  | 0.0609          | 0.3322   | 0.6644        | 0.6644           | nan                | nan           | 0.6644        | 0.0           | nan      | 0.6644   |
| 0.0737        | 38.18 | 420  | 0.0619          | 0.4053   | 0.8107        | 0.8107           | nan                | nan           | 0.8107        | 0.0           | nan      | 0.8107   |
| 0.06          | 40.0  | 440  | 0.0564          | 0.3593   | 0.7186        | 0.7186           | nan                | nan           | 0.7186        | 0.0           | nan      | 0.7186   |
| 0.0555        | 41.82 | 460  | 0.0562          | 0.4025   | 0.8050        | 0.8050           | nan                | nan           | 0.8050        | 0.0           | nan      | 0.8050   |
| 0.063         | 43.64 | 480  | 0.0550          | 0.3945   | 0.7891        | 0.7891           | nan                | nan           | 0.7891        | 0.0           | nan      | 0.7891   |
| 0.0641        | 45.45 | 500  | 0.0554          | 0.4032   | 0.8065        | 0.8065           | nan                | nan           | 0.8065        | 0.0           | nan      | 0.8065   |
| 0.0739        | 47.27 | 520  | 0.0549          | 0.3880   | 0.7760        | 0.7760           | nan                | nan           | 0.7760        | 0.0           | nan      | 0.7760   |
| 0.0684        | 49.09 | 540  | 0.0517          | 0.3741   | 0.7482        | 0.7482           | nan                | nan           | 0.7482        | 0.0           | nan      | 0.7482   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3