HorcruxNo13 commited on
Commit
d5c1a50
1 Parent(s): 9363e2d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -36
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  license: other
3
  tags:
 
 
4
  - generated_from_trainer
5
  model-index:
6
  - name: segformer-b0-finetuned-segments-toolwear
@@ -12,18 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # segformer-b0-finetuned-segments-toolwear
14
 
15
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.7517
18
- - Mean Iou: 0.3530
19
- - Mean Accuracy: 0.7066
20
- - Overall Accuracy: 0.7444
21
  - Accuracy Unlabeled: nan
22
- - Accuracy Tool: 0.6653
23
- - Accuracy Wear: 0.7480
24
  - Iou Unlabeled: 0.0
25
- - Iou Tool: 0.3188
26
- - Iou Wear: 0.7403
27
 
28
  ## Model description
29
 
@@ -54,33 +56,33 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
57
- | 0.8264 | 1.82 | 20 | 0.9929 | 0.3016 | 0.5119 | 0.6940 | nan | 0.3130 | 0.7109 | 0.0 | 0.2149 | 0.6899 |
58
- | 0.566 | 3.64 | 40 | 0.8390 | 0.3172 | 0.6658 | 0.6561 | nan | 0.6765 | 0.6552 | 0.0 | 0.3052 | 0.6466 |
59
- | 0.5515 | 5.45 | 60 | 0.7996 | 0.3015 | 0.7085 | 0.5831 | nan | 0.8455 | 0.5715 | 0.0 | 0.3365 | 0.5680 |
60
- | 0.496 | 7.27 | 80 | 0.7495 | 0.3370 | 0.7783 | 0.6771 | nan | 0.8889 | 0.6676 | 0.0 | 0.3465 | 0.6645 |
61
- | 0.4945 | 9.09 | 100 | 0.7214 | 0.3106 | 0.6966 | 0.6150 | nan | 0.7858 | 0.6074 | 0.0 | 0.3294 | 0.6025 |
62
- | 0.4392 | 10.91 | 120 | 0.7105 | 0.3012 | 0.7519 | 0.5990 | nan | 0.9191 | 0.5848 | 0.0 | 0.3198 | 0.5839 |
63
- | 0.3211 | 12.73 | 140 | 0.7570 | 0.3470 | 0.7008 | 0.7352 | nan | 0.6632 | 0.7384 | 0.0 | 0.3116 | 0.7292 |
64
- | 0.2289 | 14.55 | 160 | 0.9477 | 0.3748 | 0.7214 | 0.7566 | nan | 0.6830 | 0.7598 | 0.0 | 0.3718 | 0.7527 |
65
- | 0.4674 | 16.36 | 180 | 0.8172 | 0.3637 | 0.7442 | 0.7533 | nan | 0.7344 | 0.7541 | 0.0 | 0.3437 | 0.7476 |
66
- | 0.3226 | 18.18 | 200 | 0.8199 | 0.3238 | 0.7286 | 0.6845 | nan | 0.7769 | 0.6804 | 0.0 | 0.2939 | 0.6777 |
67
- | 0.1706 | 20.0 | 220 | 0.7336 | 0.3410 | 0.6894 | 0.7096 | nan | 0.6673 | 0.7115 | 0.0 | 0.3185 | 0.7044 |
68
- | 0.2786 | 21.82 | 240 | 0.9254 | 0.3662 | 0.7577 | 0.7864 | nan | 0.7264 | 0.7891 | 0.0 | 0.3164 | 0.7821 |
69
- | 0.1685 | 23.64 | 260 | 0.8291 | 0.3435 | 0.7685 | 0.7294 | nan | 0.8113 | 0.7258 | 0.0 | 0.3082 | 0.7224 |
70
- | 0.1649 | 25.45 | 280 | 0.7200 | 0.3303 | 0.7133 | 0.6593 | nan | 0.7723 | 0.6543 | 0.0 | 0.3394 | 0.6516 |
71
- | 0.1481 | 27.27 | 300 | 0.8155 | 0.3531 | 0.7558 | 0.7434 | nan | 0.7695 | 0.7422 | 0.0 | 0.3206 | 0.7385 |
72
- | 0.1476 | 29.09 | 320 | 0.7374 | 0.3455 | 0.6734 | 0.7252 | nan | 0.6169 | 0.7300 | 0.0 | 0.3153 | 0.7211 |
73
- | 0.2284 | 30.91 | 340 | 0.7254 | 0.3265 | 0.6989 | 0.6766 | nan | 0.7233 | 0.6745 | 0.0 | 0.3099 | 0.6695 |
74
- | 0.1212 | 32.73 | 360 | 0.8022 | 0.3591 | 0.7252 | 0.7662 | nan | 0.6804 | 0.7700 | 0.0 | 0.3153 | 0.7620 |
75
- | 0.1284 | 34.55 | 380 | 0.7345 | 0.3449 | 0.7044 | 0.7331 | nan | 0.6731 | 0.7357 | 0.0 | 0.3062 | 0.7284 |
76
- | 0.1685 | 36.36 | 400 | 0.7581 | 0.3275 | 0.7357 | 0.6991 | nan | 0.7757 | 0.6957 | 0.0 | 0.2910 | 0.6915 |
77
- | 0.1018 | 38.18 | 420 | 0.7303 | 0.3401 | 0.6575 | 0.7173 | nan | 0.5921 | 0.7228 | 0.0 | 0.3069 | 0.7133 |
78
- | 0.1405 | 40.0 | 440 | 0.7375 | 0.3555 | 0.7301 | 0.7475 | nan | 0.7111 | 0.7491 | 0.0 | 0.3234 | 0.7431 |
79
- | 0.08 | 41.82 | 460 | 0.7449 | 0.3561 | 0.7047 | 0.7457 | nan | 0.6598 | 0.7495 | 0.0 | 0.3265 | 0.7417 |
80
- | 0.1311 | 43.64 | 480 | 0.7680 | 0.3552 | 0.7205 | 0.7444 | nan | 0.6945 | 0.7466 | 0.0 | 0.3257 | 0.7398 |
81
- | 0.1235 | 45.45 | 500 | 0.7589 | 0.3523 | 0.7117 | 0.7398 | nan | 0.6811 | 0.7424 | 0.0 | 0.3218 | 0.7352 |
82
- | 0.1169 | 47.27 | 520 | 0.7676 | 0.3535 | 0.6952 | 0.7529 | nan | 0.6320 | 0.7583 | 0.0 | 0.3110 | 0.7494 |
83
- | 0.14 | 49.09 | 540 | 0.7517 | 0.3530 | 0.7066 | 0.7444 | nan | 0.6653 | 0.7480 | 0.0 | 0.3188 | 0.7403 |
84
 
85
 
86
  ### Framework versions
 
1
  ---
2
  license: other
3
  tags:
4
+ - vision
5
+ - image-segmentation
6
  - generated_from_trainer
7
  model-index:
8
  - name: segformer-b0-finetuned-segments-toolwear
 
14
 
15
  # segformer-b0-finetuned-segments-toolwear
16
 
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_edges_onlywear dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.0517
20
+ - Mean Iou: 0.3741
21
+ - Mean Accuracy: 0.7482
22
+ - Overall Accuracy: 0.7482
23
  - Accuracy Unlabeled: nan
24
+ - Accuracy Tool: nan
25
+ - Accuracy Wear: 0.7482
26
  - Iou Unlabeled: 0.0
27
+ - Iou Tool: nan
28
+ - Iou Wear: 0.7482
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
59
+ | 0.8497 | 1.82 | 20 | 0.8647 | 0.4917 | 0.9834 | 0.9834 | nan | nan | 0.9834 | 0.0 | nan | 0.9834 |
60
+ | 0.6095 | 3.64 | 40 | 0.5158 | 0.4642 | 0.9283 | 0.9283 | nan | nan | 0.9283 | 0.0 | nan | 0.9283 |
61
+ | 0.4377 | 5.45 | 60 | 0.4200 | 0.4646 | 0.9291 | 0.9291 | nan | nan | 0.9291 | 0.0 | nan | 0.9291 |
62
+ | 0.3756 | 7.27 | 80 | 0.3535 | 0.4780 | 0.9560 | 0.9560 | nan | nan | 0.9560 | 0.0 | nan | 0.9560 |
63
+ | 0.4256 | 9.09 | 100 | 0.2951 | 0.4873 | 0.9746 | 0.9746 | nan | nan | 0.9746 | 0.0 | nan | 0.9746 |
64
+ | 0.2748 | 10.91 | 120 | 0.2500 | 0.4817 | 0.9634 | 0.9634 | nan | nan | 0.9634 | 0.0 | nan | 0.9634 |
65
+ | 0.2347 | 12.73 | 140 | 0.2000 | 0.4065 | 0.8129 | 0.8129 | nan | nan | 0.8129 | 0.0 | nan | 0.8129 |
66
+ | 0.1777 | 14.55 | 160 | 0.1651 | 0.4340 | 0.8680 | 0.8680 | nan | nan | 0.8680 | 0.0 | nan | 0.8680 |
67
+ | 0.186 | 16.36 | 180 | 0.1530 | 0.4211 | 0.8422 | 0.8422 | nan | nan | 0.8422 | 0.0 | nan | 0.8422 |
68
+ | 0.1652 | 18.18 | 200 | 0.1143 | 0.4304 | 0.8608 | 0.8608 | nan | nan | 0.8608 | 0.0 | nan | 0.8608 |
69
+ | 0.1227 | 20.0 | 220 | 0.1436 | 0.4838 | 0.9676 | 0.9676 | nan | nan | 0.9676 | 0.0 | nan | 0.9676 |
70
+ | 0.1111 | 21.82 | 240 | 0.1014 | 0.3994 | 0.7988 | 0.7988 | nan | nan | 0.7988 | 0.0 | nan | 0.7988 |
71
+ | 0.0989 | 23.64 | 260 | 0.0914 | 0.3574 | 0.7147 | 0.7147 | nan | nan | 0.7147 | 0.0 | nan | 0.7147 |
72
+ | 0.1051 | 25.45 | 280 | 0.0871 | 0.2844 | 0.5689 | 0.5689 | nan | nan | 0.5689 | 0.0 | nan | 0.5689 |
73
+ | 0.0975 | 27.27 | 300 | 0.0679 | 0.3893 | 0.7786 | 0.7786 | nan | nan | 0.7786 | 0.0 | nan | 0.7786 |
74
+ | 0.0928 | 29.09 | 320 | 0.0723 | 0.4241 | 0.8483 | 0.8483 | nan | nan | 0.8483 | 0.0 | nan | 0.8483 |
75
+ | 0.0673 | 30.91 | 340 | 0.0653 | 0.3628 | 0.7255 | 0.7255 | nan | nan | 0.7255 | 0.0 | nan | 0.7255 |
76
+ | 0.0652 | 32.73 | 360 | 0.0641 | 0.4023 | 0.8047 | 0.8047 | nan | nan | 0.8047 | 0.0 | nan | 0.8047 |
77
+ | 0.0912 | 34.55 | 380 | 0.0734 | 0.4453 | 0.8906 | 0.8906 | nan | nan | 0.8906 | 0.0 | nan | 0.8906 |
78
+ | 0.0682 | 36.36 | 400 | 0.0609 | 0.3322 | 0.6644 | 0.6644 | nan | nan | 0.6644 | 0.0 | nan | 0.6644 |
79
+ | 0.0737 | 38.18 | 420 | 0.0619 | 0.4053 | 0.8107 | 0.8107 | nan | nan | 0.8107 | 0.0 | nan | 0.8107 |
80
+ | 0.06 | 40.0 | 440 | 0.0564 | 0.3593 | 0.7186 | 0.7186 | nan | nan | 0.7186 | 0.0 | nan | 0.7186 |
81
+ | 0.0555 | 41.82 | 460 | 0.0562 | 0.4025 | 0.8050 | 0.8050 | nan | nan | 0.8050 | 0.0 | nan | 0.8050 |
82
+ | 0.063 | 43.64 | 480 | 0.0550 | 0.3945 | 0.7891 | 0.7891 | nan | nan | 0.7891 | 0.0 | nan | 0.7891 |
83
+ | 0.0641 | 45.45 | 500 | 0.0554 | 0.4032 | 0.8065 | 0.8065 | nan | nan | 0.8065 | 0.0 | nan | 0.8065 |
84
+ | 0.0739 | 47.27 | 520 | 0.0549 | 0.3880 | 0.7760 | 0.7760 | nan | nan | 0.7760 | 0.0 | nan | 0.7760 |
85
+ | 0.0684 | 49.09 | 540 | 0.0517 | 0.3741 | 0.7482 | 0.7482 | nan | nan | 0.7482 | 0.0 | nan | 0.7482 |
86
 
87
 
88
  ### Framework versions