HorcruxNo13
commited on
Commit
•
d5c1a50
1
Parent(s):
9363e2d
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
23 |
-
- Accuracy Wear: 0.
|
24 |
- Iou Unlabeled: 0.0
|
25 |
-
- Iou Tool:
|
26 |
-
- Iou Wear: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -54,33 +56,33 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_edges_onlywear dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0517
|
20 |
+
- Mean Iou: 0.3741
|
21 |
+
- Mean Accuracy: 0.7482
|
22 |
+
- Overall Accuracy: 0.7482
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: nan
|
25 |
+
- Accuracy Wear: 0.7482
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Tool: nan
|
28 |
+
- Iou Wear: 0.7482
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.8497 | 1.82 | 20 | 0.8647 | 0.4917 | 0.9834 | 0.9834 | nan | nan | 0.9834 | 0.0 | nan | 0.9834 |
|
60 |
+
| 0.6095 | 3.64 | 40 | 0.5158 | 0.4642 | 0.9283 | 0.9283 | nan | nan | 0.9283 | 0.0 | nan | 0.9283 |
|
61 |
+
| 0.4377 | 5.45 | 60 | 0.4200 | 0.4646 | 0.9291 | 0.9291 | nan | nan | 0.9291 | 0.0 | nan | 0.9291 |
|
62 |
+
| 0.3756 | 7.27 | 80 | 0.3535 | 0.4780 | 0.9560 | 0.9560 | nan | nan | 0.9560 | 0.0 | nan | 0.9560 |
|
63 |
+
| 0.4256 | 9.09 | 100 | 0.2951 | 0.4873 | 0.9746 | 0.9746 | nan | nan | 0.9746 | 0.0 | nan | 0.9746 |
|
64 |
+
| 0.2748 | 10.91 | 120 | 0.2500 | 0.4817 | 0.9634 | 0.9634 | nan | nan | 0.9634 | 0.0 | nan | 0.9634 |
|
65 |
+
| 0.2347 | 12.73 | 140 | 0.2000 | 0.4065 | 0.8129 | 0.8129 | nan | nan | 0.8129 | 0.0 | nan | 0.8129 |
|
66 |
+
| 0.1777 | 14.55 | 160 | 0.1651 | 0.4340 | 0.8680 | 0.8680 | nan | nan | 0.8680 | 0.0 | nan | 0.8680 |
|
67 |
+
| 0.186 | 16.36 | 180 | 0.1530 | 0.4211 | 0.8422 | 0.8422 | nan | nan | 0.8422 | 0.0 | nan | 0.8422 |
|
68 |
+
| 0.1652 | 18.18 | 200 | 0.1143 | 0.4304 | 0.8608 | 0.8608 | nan | nan | 0.8608 | 0.0 | nan | 0.8608 |
|
69 |
+
| 0.1227 | 20.0 | 220 | 0.1436 | 0.4838 | 0.9676 | 0.9676 | nan | nan | 0.9676 | 0.0 | nan | 0.9676 |
|
70 |
+
| 0.1111 | 21.82 | 240 | 0.1014 | 0.3994 | 0.7988 | 0.7988 | nan | nan | 0.7988 | 0.0 | nan | 0.7988 |
|
71 |
+
| 0.0989 | 23.64 | 260 | 0.0914 | 0.3574 | 0.7147 | 0.7147 | nan | nan | 0.7147 | 0.0 | nan | 0.7147 |
|
72 |
+
| 0.1051 | 25.45 | 280 | 0.0871 | 0.2844 | 0.5689 | 0.5689 | nan | nan | 0.5689 | 0.0 | nan | 0.5689 |
|
73 |
+
| 0.0975 | 27.27 | 300 | 0.0679 | 0.3893 | 0.7786 | 0.7786 | nan | nan | 0.7786 | 0.0 | nan | 0.7786 |
|
74 |
+
| 0.0928 | 29.09 | 320 | 0.0723 | 0.4241 | 0.8483 | 0.8483 | nan | nan | 0.8483 | 0.0 | nan | 0.8483 |
|
75 |
+
| 0.0673 | 30.91 | 340 | 0.0653 | 0.3628 | 0.7255 | 0.7255 | nan | nan | 0.7255 | 0.0 | nan | 0.7255 |
|
76 |
+
| 0.0652 | 32.73 | 360 | 0.0641 | 0.4023 | 0.8047 | 0.8047 | nan | nan | 0.8047 | 0.0 | nan | 0.8047 |
|
77 |
+
| 0.0912 | 34.55 | 380 | 0.0734 | 0.4453 | 0.8906 | 0.8906 | nan | nan | 0.8906 | 0.0 | nan | 0.8906 |
|
78 |
+
| 0.0682 | 36.36 | 400 | 0.0609 | 0.3322 | 0.6644 | 0.6644 | nan | nan | 0.6644 | 0.0 | nan | 0.6644 |
|
79 |
+
| 0.0737 | 38.18 | 420 | 0.0619 | 0.4053 | 0.8107 | 0.8107 | nan | nan | 0.8107 | 0.0 | nan | 0.8107 |
|
80 |
+
| 0.06 | 40.0 | 440 | 0.0564 | 0.3593 | 0.7186 | 0.7186 | nan | nan | 0.7186 | 0.0 | nan | 0.7186 |
|
81 |
+
| 0.0555 | 41.82 | 460 | 0.0562 | 0.4025 | 0.8050 | 0.8050 | nan | nan | 0.8050 | 0.0 | nan | 0.8050 |
|
82 |
+
| 0.063 | 43.64 | 480 | 0.0550 | 0.3945 | 0.7891 | 0.7891 | nan | nan | 0.7891 | 0.0 | nan | 0.7891 |
|
83 |
+
| 0.0641 | 45.45 | 500 | 0.0554 | 0.4032 | 0.8065 | 0.8065 | nan | nan | 0.8065 | 0.0 | nan | 0.8065 |
|
84 |
+
| 0.0739 | 47.27 | 520 | 0.0549 | 0.3880 | 0.7760 | 0.7760 | nan | nan | 0.7760 | 0.0 | nan | 0.7760 |
|
85 |
+
| 0.0684 | 49.09 | 540 | 0.0517 | 0.3741 | 0.7482 | 0.7482 | nan | nan | 0.7482 | 0.0 | nan | 0.7482 |
|
86 |
|
87 |
|
88 |
### Framework versions
|