HorcruxNo13's picture
Model save
635d653 verified
|
raw
history blame
5.72 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: beit-base-patch16-224
    results: []

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3752
  • Accuracy: 0.9388
  • Precision: 0.9451
  • Recall: 0.9388
  • F1 Score: 0.9412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 0.9412 4 0.3599 0.8644 0.8831 0.8644 0.8152
No log 1.8824 8 0.2752 0.8983 0.8983 0.8983 0.8983
No log 2.8235 12 0.1735 0.9322 0.9293 0.9322 0.9286
0.2978 4.0 17 0.1745 0.9153 0.9311 0.9153 0.9200
0.2978 4.9412 21 0.1888 0.9153 0.9196 0.9153 0.9171
0.2978 5.8824 25 0.2819 0.8983 0.9092 0.8983 0.9024
0.2978 6.8235 29 0.5332 0.9153 0.9230 0.9153 0.9010
0.0283 8.0 34 0.5418 0.9153 0.9311 0.9153 0.9200
0.0283 8.9412 38 0.6494 0.8983 0.9092 0.8983 0.8758
0.0283 9.8824 42 0.5615 0.9153 0.9455 0.9153 0.9222
0.0061 10.8235 46 0.8767 0.8983 0.8910 0.8983 0.8857
0.0061 12.0 51 0.3859 0.9492 0.9619 0.9492 0.9520
0.0061 12.9412 55 0.4550 0.9322 0.9322 0.9322 0.9322
0.0061 13.8824 59 0.4314 0.9492 0.9477 0.9492 0.9479
0.01 14.8235 63 0.4127 0.9492 0.9619 0.9492 0.9520
0.01 16.0 68 0.3285 0.9492 0.9477 0.9492 0.9479
0.01 16.9412 72 0.3180 0.9492 0.9477 0.9492 0.9479
0.0076 17.8824 76 0.4482 0.9322 0.9293 0.9322 0.9286
0.0076 18.8235 80 0.4437 0.9322 0.9322 0.9322 0.9322
0.0076 20.0 85 0.4819 0.9322 0.9322 0.9322 0.9322
0.0076 20.9412 89 0.5133 0.9322 0.9293 0.9322 0.9286
0.0003 21.8824 93 0.4540 0.9492 0.9477 0.9492 0.9479
0.0003 22.8235 97 0.3857 0.9153 0.9196 0.9153 0.9171
0.0003 24.0 102 0.4077 0.8983 0.9092 0.8983 0.9024
0.0028 24.9412 106 0.3956 0.9492 0.9477 0.9492 0.9479
0.0028 25.8824 110 0.4671 0.9322 0.9293 0.9322 0.9286
0.0028 26.8235 114 0.3811 0.9322 0.9322 0.9322 0.9322
0.0028 28.0 119 0.3700 0.9322 0.9322 0.9322 0.9322
0.0006 28.9412 123 0.4028 0.9322 0.9322 0.9322 0.9322
0.0006 29.8824 127 0.6924 0.9153 0.9106 0.9153 0.9080
0.0006 30.8235 131 0.6949 0.9153 0.9106 0.9153 0.9080
0.0033 32.0 136 0.5889 0.9153 0.9120 0.9153 0.9132
0.0033 32.9412 140 0.5128 0.9322 0.9322 0.9322 0.9322
0.0033 33.8824 144 0.4411 0.9492 0.9522 0.9492 0.9502
0.0033 34.8235 148 0.4420 0.9492 0.9522 0.9492 0.9502
0.0013 36.0 153 0.5616 0.9322 0.9322 0.9322 0.9322
0.0013 36.9412 157 0.6365 0.9153 0.9120 0.9153 0.9132
0.0013 37.8824 161 0.6695 0.9153 0.9120 0.9153 0.9132
0.0001 38.8235 165 0.6846 0.9153 0.9120 0.9153 0.9132
0.0001 40.0 170 0.6930 0.9153 0.9120 0.9153 0.9132
0.0001 40.9412 174 0.6958 0.9153 0.9120 0.9153 0.9132
0.0001 41.8824 178 0.6967 0.9153 0.9120 0.9153 0.9132
0.0044 42.3529 180 0.6952 0.9153 0.9120 0.9153 0.9132

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1