Edit model card

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8528
  • Accuracy: 0.8268
  • Precision: 0.8303
  • Recall: 0.8268
  • F1 Score: 0.8283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 0.8 2 0.6993 0.5882 0.5390 0.5882 0.5541
No log 2.0 5 0.5971 0.6863 0.6806 0.6863 0.6033
No log 2.8 7 0.5306 0.8039 0.8000 0.8039 0.8006
No log 4.0 10 0.4828 0.7255 0.7229 0.7255 0.6859
No log 4.8 12 0.3812 0.7843 0.7786 0.7843 0.7784
0.5413 6.0 15 0.5268 0.7451 0.7461 0.7451 0.7141
0.5413 6.8 17 0.5349 0.7451 0.8556 0.7451 0.7502
0.5413 8.0 20 0.4120 0.8039 0.8485 0.8039 0.7756
0.5413 8.8 22 0.3156 0.8039 0.8003 0.8039 0.7963
0.5413 10.0 25 0.3217 0.8039 0.8061 0.8039 0.7909
0.5413 10.8 27 0.5161 0.7843 0.7870 0.7843 0.7664
0.0919 12.0 30 0.3677 0.8431 0.8498 0.8431 0.8451
0.0919 12.8 32 0.4631 0.8431 0.8407 0.8431 0.8405
0.0919 14.0 35 0.5001 0.8235 0.8214 0.8235 0.8221
0.0919 14.8 37 0.4489 0.8431 0.8431 0.8431 0.8431
0.0919 16.0 40 0.5892 0.7843 0.7799 0.7843 0.7731
0.0919 16.8 42 0.6579 0.7843 0.7799 0.7843 0.7731
0.006 18.0 45 0.7038 0.7843 0.7799 0.7843 0.7731
0.006 18.8 47 0.5864 0.8627 0.8737 0.8627 0.8651
0.006 20.0 50 0.5488 0.8627 0.8737 0.8627 0.8651
0.006 20.8 52 0.6651 0.8039 0.8003 0.8039 0.7963
0.006 22.0 55 0.6265 0.8039 0.8000 0.8039 0.8006
0.006 22.8 57 0.5229 0.8627 0.8653 0.8627 0.8637
0.0048 24.0 60 0.5421 0.8627 0.8653 0.8627 0.8637
0.0048 24.8 62 0.6335 0.8235 0.8205 0.8235 0.8187
0.0048 26.0 65 1.0379 0.8039 0.8201 0.8039 0.7841
0.0048 26.8 67 0.9758 0.8235 0.8366 0.8235 0.8089
0.0048 28.0 70 0.6117 0.8235 0.8205 0.8235 0.8187
0.0048 28.8 72 0.5403 0.8627 0.8613 0.8627 0.8617
0.0063 30.0 75 0.6469 0.8431 0.8407 0.8431 0.8405
0.0063 30.8 77 0.7014 0.8235 0.8205 0.8235 0.8187
0.0063 32.0 80 0.7514 0.8235 0.8205 0.8235 0.8187
0.0063 32.8 82 0.7771 0.8235 0.8248 0.8235 0.8144
0.0063 34.0 85 0.7599 0.8039 0.8003 0.8039 0.7963
0.0063 34.8 87 0.7554 0.8039 0.8003 0.8039 0.7963
0.0045 36.0 90 0.7308 0.8039 0.8003 0.8039 0.7963

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
69
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HorcruxNo13/beit-base-patch16-224

Finetuned
(286)
this model