File size: 5,716 Bytes
9436add
 
 
 
 
 
 
c100af2
 
9436add
 
c9c31f9
9436add
 
 
 
 
 
 
c9c31f9
9436add
635d653
 
 
 
 
9436add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635d653
 
9436add
 
635d653
9436add
 
 
c9c31f9
9436add
 
 
635d653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9436add
 
 
 
2d317e6
c9c31f9
2d317e6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: beit-base-patch16-224
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# beit-base-patch16-224

This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co./microsoft/beit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3752
- Accuracy: 0.9388
- Precision: 0.9451
- Recall: 0.9388
- F1 Score: 0.9412

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| No log        | 0.9412  | 4    | 0.3599          | 0.8644   | 0.8831    | 0.8644 | 0.8152   |
| No log        | 1.8824  | 8    | 0.2752          | 0.8983   | 0.8983    | 0.8983 | 0.8983   |
| No log        | 2.8235  | 12   | 0.1735          | 0.9322   | 0.9293    | 0.9322 | 0.9286   |
| 0.2978        | 4.0     | 17   | 0.1745          | 0.9153   | 0.9311    | 0.9153 | 0.9200   |
| 0.2978        | 4.9412  | 21   | 0.1888          | 0.9153   | 0.9196    | 0.9153 | 0.9171   |
| 0.2978        | 5.8824  | 25   | 0.2819          | 0.8983   | 0.9092    | 0.8983 | 0.9024   |
| 0.2978        | 6.8235  | 29   | 0.5332          | 0.9153   | 0.9230    | 0.9153 | 0.9010   |
| 0.0283        | 8.0     | 34   | 0.5418          | 0.9153   | 0.9311    | 0.9153 | 0.9200   |
| 0.0283        | 8.9412  | 38   | 0.6494          | 0.8983   | 0.9092    | 0.8983 | 0.8758   |
| 0.0283        | 9.8824  | 42   | 0.5615          | 0.9153   | 0.9455    | 0.9153 | 0.9222   |
| 0.0061        | 10.8235 | 46   | 0.8767          | 0.8983   | 0.8910    | 0.8983 | 0.8857   |
| 0.0061        | 12.0    | 51   | 0.3859          | 0.9492   | 0.9619    | 0.9492 | 0.9520   |
| 0.0061        | 12.9412 | 55   | 0.4550          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0061        | 13.8824 | 59   | 0.4314          | 0.9492   | 0.9477    | 0.9492 | 0.9479   |
| 0.01          | 14.8235 | 63   | 0.4127          | 0.9492   | 0.9619    | 0.9492 | 0.9520   |
| 0.01          | 16.0    | 68   | 0.3285          | 0.9492   | 0.9477    | 0.9492 | 0.9479   |
| 0.01          | 16.9412 | 72   | 0.3180          | 0.9492   | 0.9477    | 0.9492 | 0.9479   |
| 0.0076        | 17.8824 | 76   | 0.4482          | 0.9322   | 0.9293    | 0.9322 | 0.9286   |
| 0.0076        | 18.8235 | 80   | 0.4437          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0076        | 20.0    | 85   | 0.4819          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0076        | 20.9412 | 89   | 0.5133          | 0.9322   | 0.9293    | 0.9322 | 0.9286   |
| 0.0003        | 21.8824 | 93   | 0.4540          | 0.9492   | 0.9477    | 0.9492 | 0.9479   |
| 0.0003        | 22.8235 | 97   | 0.3857          | 0.9153   | 0.9196    | 0.9153 | 0.9171   |
| 0.0003        | 24.0    | 102  | 0.4077          | 0.8983   | 0.9092    | 0.8983 | 0.9024   |
| 0.0028        | 24.9412 | 106  | 0.3956          | 0.9492   | 0.9477    | 0.9492 | 0.9479   |
| 0.0028        | 25.8824 | 110  | 0.4671          | 0.9322   | 0.9293    | 0.9322 | 0.9286   |
| 0.0028        | 26.8235 | 114  | 0.3811          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0028        | 28.0    | 119  | 0.3700          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0006        | 28.9412 | 123  | 0.4028          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0006        | 29.8824 | 127  | 0.6924          | 0.9153   | 0.9106    | 0.9153 | 0.9080   |
| 0.0006        | 30.8235 | 131  | 0.6949          | 0.9153   | 0.9106    | 0.9153 | 0.9080   |
| 0.0033        | 32.0    | 136  | 0.5889          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0033        | 32.9412 | 140  | 0.5128          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0033        | 33.8824 | 144  | 0.4411          | 0.9492   | 0.9522    | 0.9492 | 0.9502   |
| 0.0033        | 34.8235 | 148  | 0.4420          | 0.9492   | 0.9522    | 0.9492 | 0.9502   |
| 0.0013        | 36.0    | 153  | 0.5616          | 0.9322   | 0.9322    | 0.9322 | 0.9322   |
| 0.0013        | 36.9412 | 157  | 0.6365          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0013        | 37.8824 | 161  | 0.6695          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0001        | 38.8235 | 165  | 0.6846          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0001        | 40.0    | 170  | 0.6930          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0001        | 40.9412 | 174  | 0.6958          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0001        | 41.8824 | 178  | 0.6967          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |
| 0.0044        | 42.3529 | 180  | 0.6952          | 0.9153   | 0.9120    | 0.9153 | 0.9132   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1