HorcruxNo13 commited on
Commit
c100af2
·
1 Parent(s): 5eda3e1

Model save

Browse files
Files changed (2) hide show
  1. README.md +37 -14
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -7,6 +7,8 @@ datasets:
7
  - imagefolder
8
  metrics:
9
  - accuracy
 
 
10
  model-index:
11
  - name: beit-base-patch16-224
12
  results:
@@ -22,7 +24,13 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.6766666666666666
 
 
 
 
 
 
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6115
36
- - Accuracy: 0.6767
 
 
 
37
 
38
  ## Model description
39
 
@@ -53,28 +64,40 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 128
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 3
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | No log | 1.0 | 8 | 0.8224 | 0.7333 |
71
- | 4.1576 | 2.0 | 16 | 0.5882 | 0.7417 |
72
- | 0.66 | 3.0 | 24 | 0.5830 | 0.7667 |
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
 
75
  ### Framework versions
76
 
77
- - Transformers 4.32.1
78
  - Pytorch 2.0.1+cu118
79
- - Datasets 2.14.4
80
  - Tokenizers 0.13.3
 
7
  - imagefolder
8
  metrics:
9
  - accuracy
10
+ - precision
11
+ - recall
12
  model-index:
13
  - name: beit-base-patch16-224
14
  results:
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.7933333333333333
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.7853286177424108
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.7933333333333333
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.8531
44
+ - Accuracy: 0.7933
45
+ - Precision: 0.7853
46
+ - Recall: 0.7933
47
+ - F1 Score: 0.7662
48
 
49
  ## Model description
50
 
 
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 5e-05
67
+ - train_batch_size: 64
68
+ - eval_batch_size: 64
69
  - seed: 42
70
  - gradient_accumulation_steps: 4
71
+ - total_train_batch_size: 256
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
  - lr_scheduler_warmup_ratio: 0.1
75
+ - num_epochs: 15
76
 
77
  ### Training results
78
 
79
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
80
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
81
+ | No log | 1.0 | 4 | 0.5815 | 0.7292 | 0.6273 | 0.7292 | 0.6259 |
82
+ | No log | 2.0 | 8 | 0.5493 | 0.7333 | 0.6901 | 0.7333 | 0.6863 |
83
+ | No log | 3.0 | 12 | 0.5545 | 0.7667 | 0.7575 | 0.7667 | 0.7147 |
84
+ | 0.5698 | 4.0 | 16 | 0.5706 | 0.7667 | 0.7503 | 0.7667 | 0.7221 |
85
+ | 0.5698 | 5.0 | 20 | 0.5800 | 0.7667 | 0.7575 | 0.7667 | 0.7147 |
86
+ | 0.5698 | 6.0 | 24 | 0.5929 | 0.7833 | 0.7772 | 0.7833 | 0.7451 |
87
+ | 0.5698 | 7.0 | 28 | 0.5783 | 0.7833 | 0.7677 | 0.7833 | 0.7672 |
88
+ | 0.2938 | 8.0 | 32 | 0.5665 | 0.7875 | 0.7793 | 0.7875 | 0.7821 |
89
+ | 0.2938 | 9.0 | 36 | 0.7751 | 0.7875 | 0.7770 | 0.7875 | 0.7571 |
90
+ | 0.2938 | 10.0 | 40 | 0.7088 | 0.7917 | 0.7816 | 0.7917 | 0.7843 |
91
+ | 0.2938 | 11.0 | 44 | 0.8799 | 0.8042 | 0.7972 | 0.8042 | 0.7808 |
92
+ | 0.0834 | 12.0 | 48 | 0.8367 | 0.7875 | 0.7793 | 0.7875 | 0.7821 |
93
+ | 0.0834 | 13.0 | 52 | 0.9200 | 0.7958 | 0.7834 | 0.7958 | 0.7758 |
94
+ | 0.0834 | 14.0 | 56 | 0.8821 | 0.8 | 0.7879 | 0.8 | 0.7869 |
95
+ | 0.0358 | 15.0 | 60 | 0.8674 | 0.7875 | 0.7753 | 0.7875 | 0.7777 |
96
 
97
 
98
  ### Framework versions
99
 
100
+ - Transformers 4.33.2
101
  - Pytorch 2.0.1+cu118
102
+ - Datasets 2.14.5
103
  - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:31fe8d990a3c2ca39447ad4c6dd16146fffbf65b57e2b9af5325aacb646a62fb
3
  size 343130249
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fbdd82dc506c05384601626586b6b8d6934ca1cc1490b04737053aa031be82b
3
  size 343130249