HorcruxNo13 commited on
Commit
c9c31f9
·
verified ·
1 Parent(s): 15105a1

Model save

Browse files
README.md CHANGED
@@ -3,34 +3,13 @@ license: apache-2.0
3
  base_model: microsoft/beit-base-patch16-224
4
  tags:
5
  - generated_from_trainer
6
- datasets:
7
- - imagefolder
8
  metrics:
9
  - accuracy
10
  - precision
11
  - recall
12
  model-index:
13
  - name: beit-base-patch16-224
14
- results:
15
- - task:
16
- name: Image Classification
17
- type: image-classification
18
- dataset:
19
- name: imagefolder
20
- type: imagefolder
21
- config: default
22
- split: validation
23
- args: default
24
- metrics:
25
- - name: Accuracy
26
- type: accuracy
27
- value: 0.85
28
- - name: Precision
29
- type: precision
30
- value: 0.8455590062111802
31
- - name: Recall
32
- type: recall
33
- value: 0.85
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -38,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
38
 
39
  # beit-base-patch16-224
40
 
41
- This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.4871
44
- - Accuracy: 0.85
45
- - Precision: 0.8456
46
- - Recall: 0.85
47
- - F1 Score: 0.8464
48
 
49
  ## Model description
50
 
@@ -64,55 +43,68 @@ More information needed
64
 
65
  The following hyperparameters were used during training:
66
  - learning_rate: 5e-05
67
- - train_batch_size: 64
68
- - eval_batch_size: 64
69
  - seed: 42
70
  - gradient_accumulation_steps: 4
71
- - total_train_batch_size: 256
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
  - lr_scheduler_warmup_ratio: 0.1
75
- - num_epochs: 30
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
81
- | No log | 1.0 | 4 | 0.5784 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
82
- | No log | 2.0 | 8 | 0.5813 | 0.7375 | 0.7030 | 0.7375 | 0.6441 |
83
- | No log | 3.0 | 12 | 0.5486 | 0.7417 | 0.7297 | 0.7417 | 0.7343 |
84
- | No log | 4.0 | 16 | 0.5394 | 0.7542 | 0.7333 | 0.7542 | 0.7370 |
85
- | No log | 5.0 | 20 | 0.5067 | 0.775 | 0.7658 | 0.775 | 0.7321 |
86
- | No log | 6.0 | 24 | 0.5542 | 0.7958 | 0.7966 | 0.7958 | 0.7613 |
87
- | No log | 7.0 | 28 | 0.4753 | 0.7958 | 0.7834 | 0.7958 | 0.7758 |
88
- | 0.5325 | 8.0 | 32 | 0.5265 | 0.7792 | 0.7661 | 0.7792 | 0.7448 |
89
- | 0.5325 | 9.0 | 36 | 0.4789 | 0.8208 | 0.8134 | 0.8208 | 0.8067 |
90
- | 0.5325 | 10.0 | 40 | 0.4939 | 0.7875 | 0.7932 | 0.7875 | 0.7900 |
91
- | 0.5325 | 11.0 | 44 | 0.4917 | 0.8042 | 0.8032 | 0.8042 | 0.8037 |
92
- | 0.5325 | 12.0 | 48 | 0.5001 | 0.8083 | 0.8019 | 0.8083 | 0.8041 |
93
- | 0.5325 | 13.0 | 52 | 0.4742 | 0.8 | 0.7897 | 0.8 | 0.7915 |
94
- | 0.5325 | 14.0 | 56 | 0.5439 | 0.7875 | 0.8037 | 0.7875 | 0.7932 |
95
- | 0.3381 | 15.0 | 60 | 0.5436 | 0.8333 | 0.8265 | 0.8333 | 0.8263 |
96
- | 0.3381 | 16.0 | 64 | 0.4989 | 0.8375 | 0.8312 | 0.8375 | 0.8288 |
97
- | 0.3381 | 17.0 | 68 | 0.4949 | 0.8333 | 0.8282 | 0.8333 | 0.8296 |
98
- | 0.3381 | 18.0 | 72 | 0.4709 | 0.8292 | 0.8283 | 0.8292 | 0.8287 |
99
- | 0.3381 | 19.0 | 76 | 0.4680 | 0.8167 | 0.8133 | 0.8167 | 0.8147 |
100
- | 0.3381 | 20.0 | 80 | 0.5053 | 0.8417 | 0.8362 | 0.8417 | 0.8371 |
101
- | 0.3381 | 21.0 | 84 | 0.5480 | 0.8458 | 0.8459 | 0.8458 | 0.8322 |
102
- | 0.3381 | 22.0 | 88 | 0.4548 | 0.8542 | 0.8512 | 0.8542 | 0.8522 |
103
- | 0.2076 | 23.0 | 92 | 0.4891 | 0.8458 | 0.8407 | 0.8458 | 0.8376 |
104
- | 0.2076 | 24.0 | 96 | 0.4981 | 0.85 | 0.8486 | 0.85 | 0.8492 |
105
- | 0.2076 | 25.0 | 100 | 0.4993 | 0.8458 | 0.8426 | 0.8458 | 0.8438 |
106
- | 0.2076 | 26.0 | 104 | 0.5026 | 0.8542 | 0.8503 | 0.8542 | 0.8514 |
107
- | 0.2076 | 27.0 | 108 | 0.4944 | 0.8542 | 0.8522 | 0.8542 | 0.8530 |
108
- | 0.2076 | 28.0 | 112 | 0.4821 | 0.8542 | 0.8549 | 0.8542 | 0.8545 |
109
- | 0.2076 | 29.0 | 116 | 0.4714 | 0.8583 | 0.8559 | 0.8583 | 0.8568 |
110
- | 0.138 | 30.0 | 120 | 0.4705 | 0.8583 | 0.8559 | 0.8583 | 0.8568 |
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
 
113
  ### Framework versions
114
 
115
- - Transformers 4.33.3
116
- - Pytorch 2.0.1+cu118
117
- - Datasets 2.14.5
118
- - Tokenizers 0.13.3
 
3
  base_model: microsoft/beit-base-patch16-224
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - accuracy
8
  - precision
9
  - recall
10
  model-index:
11
  - name: beit-base-patch16-224
12
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # beit-base-patch16-224
19
 
20
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.3575
23
+ - Accuracy: 0.9456
24
+ - Precision: 0.9498
25
+ - Recall: 0.9456
26
+ - F1 Score: 0.9473
27
 
28
  ## Model description
29
 
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
  - seed: 42
49
  - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 128
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 45
55
 
56
  ### Training results
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
59
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
60
+ | No log | 0.94 | 4 | 0.3212 | 0.8475 | 0.8711 | 0.8475 | 0.7915 |
61
+ | No log | 1.88 | 8 | 0.2355 | 0.8983 | 0.8925 | 0.8983 | 0.8937 |
62
+ | No log | 2.82 | 12 | 0.3134 | 0.8644 | 0.8834 | 0.8644 | 0.8243 |
63
+ | 0.2493 | 4.0 | 17 | 0.2434 | 0.8814 | 0.8962 | 0.8814 | 0.8534 |
64
+ | 0.2493 | 4.94 | 21 | 0.3406 | 0.8983 | 0.9094 | 0.8983 | 0.8794 |
65
+ | 0.2493 | 5.88 | 25 | 0.1131 | 0.9322 | 0.9300 | 0.9322 | 0.9291 |
66
+ | 0.2493 | 6.82 | 29 | 0.1727 | 0.9153 | 0.9435 | 0.9153 | 0.9215 |
67
+ | 0.0374 | 8.0 | 34 | 0.6181 | 0.8644 | 0.8834 | 0.8644 | 0.8243 |
68
+ | 0.0374 | 8.94 | 38 | 0.3249 | 0.9153 | 0.9125 | 0.9153 | 0.9135 |
69
+ | 0.0374 | 9.88 | 42 | 0.5308 | 0.8983 | 0.8934 | 0.8983 | 0.8876 |
70
+ | 0.007 | 10.82 | 46 | 0.4767 | 0.9153 | 0.9119 | 0.9153 | 0.9090 |
71
+ | 0.007 | 12.0 | 51 | 0.3883 | 0.8983 | 0.8925 | 0.8983 | 0.8937 |
72
+ | 0.007 | 12.94 | 55 | 0.3627 | 0.8983 | 0.8934 | 0.8983 | 0.8876 |
73
+ | 0.007 | 13.88 | 59 | 0.2783 | 0.9492 | 0.9479 | 0.9492 | 0.9481 |
74
+ | 0.0012 | 14.82 | 63 | 0.1934 | 0.9492 | 0.9519 | 0.9492 | 0.9501 |
75
+ | 0.0012 | 16.0 | 68 | 0.1670 | 0.9661 | 0.9661 | 0.9661 | 0.9661 |
76
+ | 0.0012 | 16.94 | 72 | 0.1783 | 0.9492 | 0.9479 | 0.9492 | 0.9481 |
77
+ | 0.0001 | 17.88 | 76 | 0.4825 | 0.9322 | 0.9373 | 0.9322 | 0.9251 |
78
+ | 0.0001 | 18.82 | 80 | 0.9010 | 0.8983 | 0.9094 | 0.8983 | 0.8794 |
79
+ | 0.0001 | 20.0 | 85 | 0.1802 | 0.9661 | 0.9718 | 0.9661 | 0.9673 |
80
+ | 0.0001 | 20.94 | 89 | 0.5658 | 0.9153 | 0.9119 | 0.9153 | 0.9090 |
81
+ | 0.0037 | 21.88 | 93 | 0.8331 | 0.9322 | 0.9373 | 0.9322 | 0.9251 |
82
+ | 0.0037 | 22.82 | 97 | 0.8074 | 0.9153 | 0.9119 | 0.9153 | 0.9090 |
83
+ | 0.0037 | 24.0 | 102 | 0.4763 | 0.8814 | 0.8771 | 0.8814 | 0.8788 |
84
+ | 0.0002 | 24.94 | 106 | 0.5553 | 0.9153 | 0.9119 | 0.9153 | 0.9090 |
85
+ | 0.0002 | 25.88 | 110 | 0.8220 | 0.9153 | 0.9231 | 0.9153 | 0.9032 |
86
+ | 0.0002 | 26.82 | 114 | 0.5367 | 0.9322 | 0.9373 | 0.9322 | 0.9251 |
87
+ | 0.0002 | 28.0 | 119 | 0.4401 | 0.9153 | 0.9298 | 0.9153 | 0.9194 |
88
+ | 0.0037 | 28.94 | 123 | 0.4138 | 0.9153 | 0.9125 | 0.9153 | 0.9135 |
89
+ | 0.0037 | 29.88 | 127 | 0.7232 | 0.8983 | 0.9094 | 0.8983 | 0.8794 |
90
+ | 0.0037 | 30.82 | 131 | 0.3690 | 0.9322 | 0.9373 | 0.9322 | 0.9251 |
91
+ | 0.0115 | 32.0 | 136 | 0.2730 | 0.9322 | 0.9400 | 0.9322 | 0.9346 |
92
+ | 0.0115 | 32.94 | 140 | 0.2101 | 0.9661 | 0.9661 | 0.9661 | 0.9661 |
93
+ | 0.0115 | 33.88 | 144 | 0.1814 | 0.9661 | 0.9661 | 0.9661 | 0.9661 |
94
+ | 0.0115 | 34.82 | 148 | 0.1641 | 0.9661 | 0.9661 | 0.9661 | 0.9661 |
95
+ | 0.0013 | 36.0 | 153 | 0.1600 | 0.9492 | 0.9479 | 0.9492 | 0.9481 |
96
+ | 0.0013 | 36.94 | 157 | 0.1709 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
97
+ | 0.0013 | 37.88 | 161 | 0.1913 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
98
+ | 0.0001 | 38.82 | 165 | 0.2047 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
99
+ | 0.0001 | 40.0 | 170 | 0.2030 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
100
+ | 0.0001 | 40.94 | 174 | 0.1960 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
101
+ | 0.0001 | 41.88 | 178 | 0.1936 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
102
+ | 0.0003 | 42.35 | 180 | 0.1934 | 0.9661 | 0.9674 | 0.9661 | 0.9646 |
103
 
104
 
105
  ### Framework versions
106
 
107
+ - Transformers 4.38.2
108
+ - Pytorch 2.2.1+cu121
109
+ - Datasets 2.18.0
110
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:683e60067d30dd6b4bb8fd0411bb0ff14e7ab8160329813f6708811fe012f47c
3
  size 343080328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d5daa79a5fcd41e31e50bd5dd25ddc718c3ebce74f7459f4873fd31054a7f42
3
  size 343080328
runs/Mar27_15-56-28_dbda3bb1da36/events.out.tfevents.1711554998.dbda3bb1da36.335.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea5ba54f1ca2a1fe89dac1274797f8b5ead79217f8d9d4bdafac9ead47828a25
3
- size 27554
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b8fb8f6c993e4c720ff6706efcf49f9aaecfb51a965edaf1cda6f77fbf549c5
3
+ size 28597
runs/Mar27_15-56-28_dbda3bb1da36/events.out.tfevents.1711556291.dbda3bb1da36.335.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf04b4c04cf06afde374592ee969e942e229d05ba27fe86b7cc07d757fc4f205
3
+ size 566