File size: 4,968 Bytes
9436add
 
 
 
 
 
 
c100af2
 
9436add
 
c9c31f9
9436add
 
 
 
 
 
 
c9c31f9
9436add
19ad9bd
 
 
 
 
9436add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ad9bd
 
9436add
 
19ad9bd
9436add
 
 
c9c31f9
9436add
 
 
c100af2
 
19ad9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9436add
 
 
 
c9c31f9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: beit-base-patch16-224
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# beit-base-patch16-224

This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co./microsoft/beit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5338
- Accuracy: 0.7165
- Precision: 0.7127
- Recall: 0.7165
- F1 Score: 0.7139

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| No log        | 0.8   | 2    | 0.7127          | 0.5686   | 0.3992    | 0.5686 | 0.4691   |
| No log        | 2.0   | 5    | 0.5967          | 0.6863   | 0.7053    | 0.6863 | 0.6139   |
| No log        | 2.8   | 7    | 0.5384          | 0.7843   | 0.7801    | 0.7843 | 0.7792   |
| No log        | 4.0   | 10   | 0.6429          | 0.6078   | 0.6547    | 0.6078 | 0.6164   |
| No log        | 4.8   | 12   | 0.6321          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| No log        | 6.0   | 15   | 0.6473          | 0.7255   | 0.7164    | 0.7255 | 0.7095   |
| No log        | 6.8   | 17   | 0.7575          | 0.6863   | 0.6694    | 0.6863 | 0.6584   |
| No log        | 8.0   | 20   | 0.9926          | 0.7255   | 0.7312    | 0.7255 | 0.6908   |
| No log        | 8.8   | 22   | 0.9139          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| No log        | 10.0  | 25   | 1.0884          | 0.7059   | 0.6937    | 0.7059 | 0.6845   |
| No log        | 10.8  | 27   | 1.2796          | 0.7451   | 0.7521    | 0.7451 | 0.7179   |
| 0.287         | 12.0  | 30   | 1.3326          | 0.6863   | 0.6704    | 0.6863 | 0.6680   |
| 0.287         | 12.8  | 32   | 1.5649          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| 0.287         | 14.0  | 35   | 1.7452          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| 0.287         | 14.8  | 37   | 1.7826          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| 0.287         | 16.0  | 40   | 1.9538          | 0.7255   | 0.7312    | 0.7255 | 0.6908   |
| 0.287         | 16.8  | 42   | 1.8850          | 0.6863   | 0.6694    | 0.6863 | 0.6584   |
| 0.287         | 18.0  | 45   | 1.7633          | 0.6863   | 0.6739    | 0.6863 | 0.6756   |
| 0.287         | 18.8  | 47   | 1.7925          | 0.7059   | 0.6940    | 0.7059 | 0.6925   |
| 0.287         | 20.0  | 50   | 2.1156          | 0.7255   | 0.7312    | 0.7255 | 0.6908   |
| 0.287         | 20.8  | 52   | 2.0156          | 0.7255   | 0.7205    | 0.7255 | 0.7011   |
| 0.287         | 22.0  | 55   | 1.8471          | 0.7255   | 0.7164    | 0.7255 | 0.7095   |
| 0.287         | 22.8  | 57   | 1.7831          | 0.7647   | 0.7593    | 0.7647 | 0.7567   |
| 0.0041        | 24.0  | 60   | 1.7628          | 0.7647   | 0.7593    | 0.7647 | 0.7567   |
| 0.0041        | 24.8  | 62   | 1.8077          | 0.7451   | 0.7382    | 0.7451 | 0.7335   |
| 0.0041        | 26.0  | 65   | 1.8068          | 0.7843   | 0.7823    | 0.7843 | 0.7745   |
| 0.0041        | 26.8  | 67   | 1.7925          | 0.7647   | 0.7593    | 0.7647 | 0.7567   |
| 0.0041        | 28.0  | 70   | 1.7721          | 0.7843   | 0.7823    | 0.7843 | 0.7745   |
| 0.0041        | 28.8  | 72   | 1.7919          | 0.7647   | 0.7624    | 0.7647 | 0.7510   |
| 0.0041        | 30.0  | 75   | 1.9588          | 0.7451   | 0.7521    | 0.7451 | 0.7179   |
| 0.0041        | 30.8  | 77   | 1.9200          | 0.7451   | 0.7521    | 0.7451 | 0.7179   |
| 0.0041        | 32.0  | 80   | 1.7746          | 0.7451   | 0.7521    | 0.7451 | 0.7179   |
| 0.0041        | 32.8  | 82   | 1.7253          | 0.7647   | 0.7624    | 0.7647 | 0.7510   |
| 0.0041        | 34.0  | 85   | 1.6992          | 0.7451   | 0.7382    | 0.7451 | 0.7335   |
| 0.0041        | 34.8  | 87   | 1.6938          | 0.7451   | 0.7382    | 0.7451 | 0.7335   |
| 0.0031        | 36.0  | 90   | 1.7014          | 0.7451   | 0.7382    | 0.7451 | 0.7335   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2