File size: 4,890 Bytes
1c098ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927e071
1c098ae
 
 
 
 
 
 
 
 
927e071
 
1c098ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a3324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c098ae
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7972972972972973
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-new_dataset_50e

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6407
- Accuracy: 0.7973

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.94  | 4    | 0.7081          | 0.6081   |
| No log        | 1.94  | 8    | 0.7104          | 0.6351   |
| 0.5516        | 2.94  | 12   | 0.6911          | 0.6351   |
| 0.5516        | 3.94  | 16   | 0.7156          | 0.7027   |
| 0.537         | 4.94  | 20   | 0.7345          | 0.7297   |
| 0.537         | 5.94  | 24   | 0.6745          | 0.6892   |
| 0.537         | 6.94  | 28   | 0.7146          | 0.7297   |
| 0.5333        | 7.94  | 32   | 0.7057          | 0.6892   |
| 0.5333        | 8.94  | 36   | 0.6531          | 0.7027   |
| 0.4871        | 9.94  | 40   | 0.6405          | 0.7027   |
| 0.4871        | 10.94 | 44   | 0.6126          | 0.6892   |
| 0.4871        | 11.94 | 48   | 0.6303          | 0.7027   |
| 0.4432        | 12.94 | 52   | 0.6264          | 0.7027   |
| 0.4432        | 13.94 | 56   | 0.6347          | 0.7432   |
| 0.3669        | 14.94 | 60   | 0.6698          | 0.6622   |
| 0.3669        | 15.94 | 64   | 0.6346          | 0.7568   |
| 0.3669        | 16.94 | 68   | 0.6510          | 0.6892   |
| 0.3704        | 17.94 | 72   | 0.6491          | 0.6892   |
| 0.3704        | 18.94 | 76   | 0.5947          | 0.7568   |
| 0.3624        | 19.94 | 80   | 0.6248          | 0.7027   |
| 0.3624        | 20.94 | 84   | 0.6580          | 0.7027   |
| 0.3624        | 21.94 | 88   | 0.6345          | 0.7162   |
| 0.3164        | 22.94 | 92   | 0.6092          | 0.7568   |
| 0.3164        | 23.94 | 96   | 0.6498          | 0.7162   |
| 0.2777        | 24.94 | 100  | 0.6915          | 0.7703   |
| 0.2777        | 25.94 | 104  | 0.6482          | 0.7838   |
| 0.2777        | 26.94 | 108  | 0.6407          | 0.7973   |
| 0.2946        | 27.94 | 112  | 0.6135          | 0.7838   |
| 0.2946        | 28.94 | 116  | 0.6819          | 0.7568   |
| 0.2546        | 29.94 | 120  | 0.6401          | 0.7568   |
| 0.2546        | 30.94 | 124  | 0.6370          | 0.7432   |
| 0.2546        | 31.94 | 128  | 0.6488          | 0.7703   |
| 0.2477        | 32.94 | 132  | 0.6429          | 0.7973   |
| 0.2477        | 33.94 | 136  | 0.6540          | 0.7703   |
| 0.1968        | 34.94 | 140  | 0.5895          | 0.7973   |
| 0.1968        | 35.94 | 144  | 0.6242          | 0.7568   |
| 0.1968        | 36.94 | 148  | 0.6575          | 0.7568   |
| 0.2235        | 37.94 | 152  | 0.6263          | 0.7703   |
| 0.2235        | 38.94 | 156  | 0.6225          | 0.7838   |
| 0.2005        | 39.94 | 160  | 0.6731          | 0.7703   |
| 0.2005        | 40.94 | 164  | 0.6844          | 0.7703   |
| 0.2005        | 41.94 | 168  | 0.6550          | 0.7703   |
| 0.2062        | 42.94 | 172  | 0.6700          | 0.7703   |
| 0.2062        | 43.94 | 176  | 0.6661          | 0.7703   |
| 0.1933        | 44.94 | 180  | 0.6606          | 0.7838   |
| 0.1933        | 45.94 | 184  | 0.6757          | 0.7703   |
| 0.1933        | 46.94 | 188  | 0.6889          | 0.7568   |
| 0.1895        | 47.94 | 192  | 0.6940          | 0.7568   |
| 0.1895        | 48.94 | 196  | 0.6919          | 0.7568   |
| 0.1666        | 49.94 | 200  | 0.6899          | 0.7432   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2