swin-tiny-patch4-window7-224-finetuned-new_dataset_50e

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6407
  • Accuracy: 0.7973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.94 4 0.7081 0.6081
No log 1.94 8 0.7104 0.6351
0.5516 2.94 12 0.6911 0.6351
0.5516 3.94 16 0.7156 0.7027
0.537 4.94 20 0.7345 0.7297
0.537 5.94 24 0.6745 0.6892
0.537 6.94 28 0.7146 0.7297
0.5333 7.94 32 0.7057 0.6892
0.5333 8.94 36 0.6531 0.7027
0.4871 9.94 40 0.6405 0.7027
0.4871 10.94 44 0.6126 0.6892
0.4871 11.94 48 0.6303 0.7027
0.4432 12.94 52 0.6264 0.7027
0.4432 13.94 56 0.6347 0.7432
0.3669 14.94 60 0.6698 0.6622
0.3669 15.94 64 0.6346 0.7568
0.3669 16.94 68 0.6510 0.6892
0.3704 17.94 72 0.6491 0.6892
0.3704 18.94 76 0.5947 0.7568
0.3624 19.94 80 0.6248 0.7027
0.3624 20.94 84 0.6580 0.7027
0.3624 21.94 88 0.6345 0.7162
0.3164 22.94 92 0.6092 0.7568
0.3164 23.94 96 0.6498 0.7162
0.2777 24.94 100 0.6915 0.7703
0.2777 25.94 104 0.6482 0.7838
0.2777 26.94 108 0.6407 0.7973
0.2946 27.94 112 0.6135 0.7838
0.2946 28.94 116 0.6819 0.7568
0.2546 29.94 120 0.6401 0.7568
0.2546 30.94 124 0.6370 0.7432
0.2546 31.94 128 0.6488 0.7703
0.2477 32.94 132 0.6429 0.7973
0.2477 33.94 136 0.6540 0.7703
0.1968 34.94 140 0.5895 0.7973
0.1968 35.94 144 0.6242 0.7568
0.1968 36.94 148 0.6575 0.7568
0.2235 37.94 152 0.6263 0.7703
0.2235 38.94 156 0.6225 0.7838
0.2005 39.94 160 0.6731 0.7703
0.2005 40.94 164 0.6844 0.7703
0.2005 41.94 168 0.6550 0.7703
0.2062 42.94 172 0.6700 0.7703
0.2062 43.94 176 0.6661 0.7703
0.1933 44.94 180 0.6606 0.7838
0.1933 45.94 184 0.6757 0.7703
0.1933 46.94 188 0.6889 0.7568
0.1895 47.94 192 0.6940 0.7568
0.1895 48.94 196 0.6919 0.7568
0.1666 49.94 200 0.6899 0.7432

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results