Gokulapriyan commited on
Commit
f8a3324
·
1 Parent(s): cba83ae

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -53
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.7837837837837838
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.7626
35
- - Accuracy: 0.7838
36
 
37
  ## Model description
38
 
@@ -66,56 +66,56 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | No log | 0.94 | 4 | 0.5406 | 0.7568 |
70
- | No log | 1.94 | 8 | 0.5781 | 0.7297 |
71
- | 0.369 | 2.94 | 12 | 0.5188 | 0.7568 |
72
- | 0.369 | 3.94 | 16 | 0.4889 | 0.7703 |
73
- | 0.3889 | 4.94 | 20 | 0.4707 | 0.7703 |
74
- | 0.3889 | 5.94 | 24 | 0.4914 | 0.7703 |
75
- | 0.3889 | 6.94 | 28 | 0.6717 | 0.7432 |
76
- | 0.3537 | 7.94 | 32 | 0.6126 | 0.7973 |
77
- | 0.3537 | 8.94 | 36 | 0.5298 | 0.7568 |
78
- | 0.3356 | 9.94 | 40 | 0.5882 | 0.7432 |
79
- | 0.3356 | 10.94 | 44 | 0.5746 | 0.7432 |
80
- | 0.3356 | 11.94 | 48 | 0.6622 | 0.7297 |
81
- | 0.3231 | 12.94 | 52 | 0.5718 | 0.7703 |
82
- | 0.3231 | 13.94 | 56 | 0.7128 | 0.7297 |
83
- | 0.3732 | 14.94 | 60 | 0.5254 | 0.7838 |
84
- | 0.3732 | 15.94 | 64 | 0.7287 | 0.7162 |
85
- | 0.3732 | 16.94 | 68 | 0.5491 | 0.7568 |
86
- | 0.3704 | 17.94 | 72 | 0.6270 | 0.8108 |
87
- | 0.3704 | 18.94 | 76 | 0.5768 | 0.7973 |
88
- | 0.3005 | 19.94 | 80 | 0.5718 | 0.7568 |
89
- | 0.3005 | 20.94 | 84 | 0.6060 | 0.7838 |
90
- | 0.3005 | 21.94 | 88 | 0.6006 | 0.7568 |
91
- | 0.2739 | 22.94 | 92 | 0.5254 | 0.7703 |
92
- | 0.2739 | 23.94 | 96 | 0.6768 | 0.7297 |
93
- | 0.2627 | 24.94 | 100 | 0.6552 | 0.7838 |
94
- | 0.2627 | 25.94 | 104 | 0.6359 | 0.7568 |
95
- | 0.2627 | 26.94 | 108 | 0.6695 | 0.7568 |
96
- | 0.2573 | 27.94 | 112 | 0.6321 | 0.7838 |
97
- | 0.2573 | 28.94 | 116 | 0.6559 | 0.7973 |
98
- | 0.2336 | 29.94 | 120 | 0.7345 | 0.7838 |
99
- | 0.2336 | 30.94 | 124 | 0.6289 | 0.7703 |
100
- | 0.2336 | 31.94 | 128 | 0.8608 | 0.6892 |
101
- | 0.2126 | 32.94 | 132 | 0.8152 | 0.7838 |
102
- | 0.2126 | 33.94 | 136 | 0.9124 | 0.7162 |
103
- | 0.2 | 34.94 | 140 | 0.7841 | 0.7703 |
104
- | 0.2 | 35.94 | 144 | 0.7741 | 0.7838 |
105
- | 0.2 | 36.94 | 148 | 0.7580 | 0.7973 |
106
- | 0.1858 | 37.94 | 152 | 0.7781 | 0.7973 |
107
- | 0.1858 | 38.94 | 156 | 0.7539 | 0.7568 |
108
- | 0.1806 | 39.94 | 160 | 0.7460 | 0.7703 |
109
- | 0.1806 | 40.94 | 164 | 0.7814 | 0.7703 |
110
- | 0.1806 | 41.94 | 168 | 0.7745 | 0.7973 |
111
- | 0.1771 | 42.94 | 172 | 0.7551 | 0.7838 |
112
- | 0.1771 | 43.94 | 176 | 0.7821 | 0.7838 |
113
- | 0.1649 | 44.94 | 180 | 0.7822 | 0.7703 |
114
- | 0.1649 | 45.94 | 184 | 0.7580 | 0.7838 |
115
- | 0.1649 | 46.94 | 188 | 0.7376 | 0.7703 |
116
- | 0.1711 | 47.94 | 192 | 0.7495 | 0.7703 |
117
- | 0.1711 | 48.94 | 196 | 0.7561 | 0.7703 |
118
- | 0.1579 | 49.94 | 200 | 0.7626 | 0.7838 |
119
 
120
 
121
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.7432432432432432
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.6899
35
+ - Accuracy: 0.7432
36
 
37
  ## Model description
38
 
 
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 0.94 | 4 | 0.7081 | 0.6081 |
70
+ | No log | 1.94 | 8 | 0.7104 | 0.6351 |
71
+ | 0.5516 | 2.94 | 12 | 0.6911 | 0.6351 |
72
+ | 0.5516 | 3.94 | 16 | 0.7156 | 0.7027 |
73
+ | 0.537 | 4.94 | 20 | 0.7345 | 0.7297 |
74
+ | 0.537 | 5.94 | 24 | 0.6745 | 0.6892 |
75
+ | 0.537 | 6.94 | 28 | 0.7146 | 0.7297 |
76
+ | 0.5333 | 7.94 | 32 | 0.7057 | 0.6892 |
77
+ | 0.5333 | 8.94 | 36 | 0.6531 | 0.7027 |
78
+ | 0.4871 | 9.94 | 40 | 0.6405 | 0.7027 |
79
+ | 0.4871 | 10.94 | 44 | 0.6126 | 0.6892 |
80
+ | 0.4871 | 11.94 | 48 | 0.6303 | 0.7027 |
81
+ | 0.4432 | 12.94 | 52 | 0.6264 | 0.7027 |
82
+ | 0.4432 | 13.94 | 56 | 0.6347 | 0.7432 |
83
+ | 0.3669 | 14.94 | 60 | 0.6698 | 0.6622 |
84
+ | 0.3669 | 15.94 | 64 | 0.6346 | 0.7568 |
85
+ | 0.3669 | 16.94 | 68 | 0.6510 | 0.6892 |
86
+ | 0.3704 | 17.94 | 72 | 0.6491 | 0.6892 |
87
+ | 0.3704 | 18.94 | 76 | 0.5947 | 0.7568 |
88
+ | 0.3624 | 19.94 | 80 | 0.6248 | 0.7027 |
89
+ | 0.3624 | 20.94 | 84 | 0.6580 | 0.7027 |
90
+ | 0.3624 | 21.94 | 88 | 0.6345 | 0.7162 |
91
+ | 0.3164 | 22.94 | 92 | 0.6092 | 0.7568 |
92
+ | 0.3164 | 23.94 | 96 | 0.6498 | 0.7162 |
93
+ | 0.2777 | 24.94 | 100 | 0.6915 | 0.7703 |
94
+ | 0.2777 | 25.94 | 104 | 0.6482 | 0.7838 |
95
+ | 0.2777 | 26.94 | 108 | 0.6407 | 0.7973 |
96
+ | 0.2946 | 27.94 | 112 | 0.6135 | 0.7838 |
97
+ | 0.2946 | 28.94 | 116 | 0.6819 | 0.7568 |
98
+ | 0.2546 | 29.94 | 120 | 0.6401 | 0.7568 |
99
+ | 0.2546 | 30.94 | 124 | 0.6370 | 0.7432 |
100
+ | 0.2546 | 31.94 | 128 | 0.6488 | 0.7703 |
101
+ | 0.2477 | 32.94 | 132 | 0.6429 | 0.7973 |
102
+ | 0.2477 | 33.94 | 136 | 0.6540 | 0.7703 |
103
+ | 0.1968 | 34.94 | 140 | 0.5895 | 0.7973 |
104
+ | 0.1968 | 35.94 | 144 | 0.6242 | 0.7568 |
105
+ | 0.1968 | 36.94 | 148 | 0.6575 | 0.7568 |
106
+ | 0.2235 | 37.94 | 152 | 0.6263 | 0.7703 |
107
+ | 0.2235 | 38.94 | 156 | 0.6225 | 0.7838 |
108
+ | 0.2005 | 39.94 | 160 | 0.6731 | 0.7703 |
109
+ | 0.2005 | 40.94 | 164 | 0.6844 | 0.7703 |
110
+ | 0.2005 | 41.94 | 168 | 0.6550 | 0.7703 |
111
+ | 0.2062 | 42.94 | 172 | 0.6700 | 0.7703 |
112
+ | 0.2062 | 43.94 | 176 | 0.6661 | 0.7703 |
113
+ | 0.1933 | 44.94 | 180 | 0.6606 | 0.7838 |
114
+ | 0.1933 | 45.94 | 184 | 0.6757 | 0.7703 |
115
+ | 0.1933 | 46.94 | 188 | 0.6889 | 0.7568 |
116
+ | 0.1895 | 47.94 | 192 | 0.6940 | 0.7568 |
117
+ | 0.1895 | 48.94 | 196 | 0.6919 | 0.7568 |
118
+ | 0.1666 | 49.94 | 200 | 0.6899 | 0.7432 |
119
 
120
 
121
  ### Framework versions