Gokulapriyan
commited on
Commit
·
f8a3324
1
Parent(s):
cba83ae
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,56 +66,56 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| No log | 0.94 | 4 | 0.
|
70 |
-
| No log | 1.94 | 8 | 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.3704 | 17.94 | 72 | 0.
|
87 |
-
| 0.3704 | 18.94 | 76 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
|
120 |
|
121 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.7432432432432432
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6899
|
35 |
+
- Accuracy: 0.7432
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.94 | 4 | 0.7081 | 0.6081 |
|
70 |
+
| No log | 1.94 | 8 | 0.7104 | 0.6351 |
|
71 |
+
| 0.5516 | 2.94 | 12 | 0.6911 | 0.6351 |
|
72 |
+
| 0.5516 | 3.94 | 16 | 0.7156 | 0.7027 |
|
73 |
+
| 0.537 | 4.94 | 20 | 0.7345 | 0.7297 |
|
74 |
+
| 0.537 | 5.94 | 24 | 0.6745 | 0.6892 |
|
75 |
+
| 0.537 | 6.94 | 28 | 0.7146 | 0.7297 |
|
76 |
+
| 0.5333 | 7.94 | 32 | 0.7057 | 0.6892 |
|
77 |
+
| 0.5333 | 8.94 | 36 | 0.6531 | 0.7027 |
|
78 |
+
| 0.4871 | 9.94 | 40 | 0.6405 | 0.7027 |
|
79 |
+
| 0.4871 | 10.94 | 44 | 0.6126 | 0.6892 |
|
80 |
+
| 0.4871 | 11.94 | 48 | 0.6303 | 0.7027 |
|
81 |
+
| 0.4432 | 12.94 | 52 | 0.6264 | 0.7027 |
|
82 |
+
| 0.4432 | 13.94 | 56 | 0.6347 | 0.7432 |
|
83 |
+
| 0.3669 | 14.94 | 60 | 0.6698 | 0.6622 |
|
84 |
+
| 0.3669 | 15.94 | 64 | 0.6346 | 0.7568 |
|
85 |
+
| 0.3669 | 16.94 | 68 | 0.6510 | 0.6892 |
|
86 |
+
| 0.3704 | 17.94 | 72 | 0.6491 | 0.6892 |
|
87 |
+
| 0.3704 | 18.94 | 76 | 0.5947 | 0.7568 |
|
88 |
+
| 0.3624 | 19.94 | 80 | 0.6248 | 0.7027 |
|
89 |
+
| 0.3624 | 20.94 | 84 | 0.6580 | 0.7027 |
|
90 |
+
| 0.3624 | 21.94 | 88 | 0.6345 | 0.7162 |
|
91 |
+
| 0.3164 | 22.94 | 92 | 0.6092 | 0.7568 |
|
92 |
+
| 0.3164 | 23.94 | 96 | 0.6498 | 0.7162 |
|
93 |
+
| 0.2777 | 24.94 | 100 | 0.6915 | 0.7703 |
|
94 |
+
| 0.2777 | 25.94 | 104 | 0.6482 | 0.7838 |
|
95 |
+
| 0.2777 | 26.94 | 108 | 0.6407 | 0.7973 |
|
96 |
+
| 0.2946 | 27.94 | 112 | 0.6135 | 0.7838 |
|
97 |
+
| 0.2946 | 28.94 | 116 | 0.6819 | 0.7568 |
|
98 |
+
| 0.2546 | 29.94 | 120 | 0.6401 | 0.7568 |
|
99 |
+
| 0.2546 | 30.94 | 124 | 0.6370 | 0.7432 |
|
100 |
+
| 0.2546 | 31.94 | 128 | 0.6488 | 0.7703 |
|
101 |
+
| 0.2477 | 32.94 | 132 | 0.6429 | 0.7973 |
|
102 |
+
| 0.2477 | 33.94 | 136 | 0.6540 | 0.7703 |
|
103 |
+
| 0.1968 | 34.94 | 140 | 0.5895 | 0.7973 |
|
104 |
+
| 0.1968 | 35.94 | 144 | 0.6242 | 0.7568 |
|
105 |
+
| 0.1968 | 36.94 | 148 | 0.6575 | 0.7568 |
|
106 |
+
| 0.2235 | 37.94 | 152 | 0.6263 | 0.7703 |
|
107 |
+
| 0.2235 | 38.94 | 156 | 0.6225 | 0.7838 |
|
108 |
+
| 0.2005 | 39.94 | 160 | 0.6731 | 0.7703 |
|
109 |
+
| 0.2005 | 40.94 | 164 | 0.6844 | 0.7703 |
|
110 |
+
| 0.2005 | 41.94 | 168 | 0.6550 | 0.7703 |
|
111 |
+
| 0.2062 | 42.94 | 172 | 0.6700 | 0.7703 |
|
112 |
+
| 0.2062 | 43.94 | 176 | 0.6661 | 0.7703 |
|
113 |
+
| 0.1933 | 44.94 | 180 | 0.6606 | 0.7838 |
|
114 |
+
| 0.1933 | 45.94 | 184 | 0.6757 | 0.7703 |
|
115 |
+
| 0.1933 | 46.94 | 188 | 0.6889 | 0.7568 |
|
116 |
+
| 0.1895 | 47.94 | 192 | 0.6940 | 0.7568 |
|
117 |
+
| 0.1895 | 48.94 | 196 | 0.6919 | 0.7568 |
|
118 |
+
| 0.1666 | 49.94 | 200 | 0.6899 | 0.7432 |
|
119 |
|
120 |
|
121 |
### Framework versions
|